Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 46))

  • 1426 Accesses

Abstract

This chapter discusses different types of non-sinusoidal orthogonal functions such as Haar functions, Walsh functions, block pulse functions, sample-and-hold functions, triangular functions, non-optimal block pulse functions and a few others. It also discusses briefly the application of Walsh, block pulse and triangular functions, three major members of the non-sinusoidal orthogonal function family, in the area of systems and control. Finally, this chapter proposes a new set of orthogonal functions named ‘Hybrid Function’ (HF). At the end of the chapter, more than hundred useful references are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sansone, G.: Orthogonal Functions. Interscience Publishers Inc., New York (1959)

    MATH  Google Scholar 

  2. Fourier, J.B.: Thėorie analytique de la Chaleur, 1828. English edition: The analytic theory of heat, 1878, Reprinted by Dover Pub. Co, New York (1955)

    Google Scholar 

  3. Beauchamp, K.G.: Walsh functions and their applications. Academic Press, London (1975)

    MATH  Google Scholar 

  4. Haar, Alfred: Zur theorie der orthogonalen funktionen systeme. Math. Annalen 69, 331–371 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mix Dwight, F., Olejniczak, K.J.: Elements of Wavelets for Engineers and Scientists. Wiley Interscience (2003)

    Google Scholar 

  6. Rademacher, H.: Einige sätze von allegemeinen orthogonal funktionen. Math. Annalen 87, 122–138 (1922)

    Article  Google Scholar 

  7. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45, 5–24 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harmuth, H.F.: Transmission of information by orthogonal functions, 2nd edn. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  9. Fino, B.J., Algazi, V.R.: Slant-Haar transform. Proc. IEEE 62, 653–654 (1974)

    Article  Google Scholar 

  10. Huang, D.M.: Walsh-Hadamard-Haar hybrid transform. In: IEEE Proceedings of 5th International Conference on Pattern Recognition, pp. 180–182 (1980)

    Google Scholar 

  11. Wu, T.T., Chen, C.F., Tsay, Y.T.: Walsh operational matrices for fractional calculus and their application to distributed systems. In: IEEE Symposium on Circuits and Systems, Munich, Germany, April, 1976

    Google Scholar 

  12. Jiang, J.H., Schaufelberger, W.: Block Pulse Functions and Their Application in Control System. LNCIS, vol. 179. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  13. Deb, Anish, Sarkar, Gautam, Sen, S.K.: Block pulse functions, the most fundamental of all piecewise constant basis functions. Int. J. Syst. Sci. 25(2), 351–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kwong, C.P., Chen, C.F.: The convergence properties of block pulse series. Int. J. Syst. Sci. 12(6), 745–751 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Enomoto, H., Shibata, K.: Orthogonal transform coding system for television signals. In: Proceedings of the 1971 Symposium on Application of Walsh Functions, Washington DC, USA, pp. 11–17 (1971)

    Google Scholar 

  16. Pratt, W.K., Welch, L.R., Chen, W.: Slant transform for image coding. In: Proceedings of the 1972 Symposium on Application of Walsh Functions, Washington DC, USA, pp. 229–234, March 1972

    Google Scholar 

  17. Pratt, W.K.: Digital Image Processing. Wiley, New York (1978)

    MATH  Google Scholar 

  18. Hwang, Chyi: Solution of functional differential equation via delayed unit step functions. Int. J. Syst. Sci. 14(9), 1065–1073 (1983)

    Article  MATH  Google Scholar 

  19. Patra, A., Rao, G.P.: General hybrid orthogonal functions—a new tool for the analysis of power-electronic systems. IEEE Trans. Ind. Electron. 36(3), 413–424 (1989)

    Article  Google Scholar 

  20. Patra, A., Rao, G.P.: General Hybrid Orthogonal Functions and Their Applications in Systems and Control. Springer, Berlin (1996)

    Google Scholar 

  21. Deb, Anish, Sarkar, Gautam, Sen, S.K.: Linearly pulse-width modulated blockpulse functions and their application to linear SISO feedback control system identification. Proc. IEE, Part D, Control Theory Appl. 142(1), 44–50 (1995)

    Article  MATH  Google Scholar 

  22. Deb, Anish, Sarkar, Gautam, Sen, S.K.: A new set of pulse width modulated generalised block pulse functions (PWM-GBPF) and their application to cross/auto-correlation of time varying functions. Int. J. Syst. Sci. 26(1), 65–89 (1995)

    Article  MATH  Google Scholar 

  23. Deb, Anish, Sarkar, Gautam, Bhattacharjee, Manabrata, Sen, S.K.: A new set of piecewise constant orthogonal functions for the analysis of linear SISO systems with sample-and-hold. J. Franklin Inst. 335B(2), 333–358 (1998)

    Article  MATH  Google Scholar 

  24. Deb, Anish, Sarkar, Gautam, Dasgupta, Anindita: A complementary pair of orthogonal triangular function sets and its application to the analysis of SISO control systems. J. Inst. Eng. (India) 84(December), 120–129 (2003)

    Google Scholar 

  25. Deb, Anish, Dasgupta, Anindita, Sarkar, Gautam: A complementary pair of orthogonal triangular function sets and its application to the analysis of dynamic systems. J. Franklin Inst. 343(1), 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deb, Anish, Sarkar, Gautam, Sengupta, Anindita: Triangular Orthogonal Functions for the Analysis of Continuous Time Systems. Anthem Press, London (2011)

    MATH  Google Scholar 

  27. Deb, A., Sarkar, G., Mandal, P., Biswas, A., Sengupta, A.: Optimal block pulse function (OBPF) vs. Non-optimal block Pulse function (NOBPF). In: Proceedings of International Conference of IEE (PEITSICON) 2005, Kolkata, 28–29 Jan 2005, pp. 195–199

    Google Scholar 

  28. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering, 2nd edn. Cambridge University Press, UK (2004)

    MATH  Google Scholar 

  29. Beauchamp, K.G.: Applications of Walsh and Related Functions with An Introduction to Sequency Theory. Academic Press, London (1984)

    Google Scholar 

  30. Maqusi, M.: Applied Walsh Analysis. Heyden, London (1981)

    MATH  Google Scholar 

  31. Hammond, J.L., Johnson, R.S.: A review of orthogonal square wave functions and their application to linear networks. J. Franklin Inst. 273, 211–225 (1962)

    Google Scholar 

  32. Corrington, M.S.: Solution of differential and integral equations with Walsh functions. IEEE Trans. Circuit Theory CT-20(5), 470–476 (1973)

    Google Scholar 

  33. Rao, G.P., Sivakumar, L.: System identification via Walsh functions. Proc. IEE 122(10), 1160–1161 (1975)

    Google Scholar 

  34. Rao, G.P., Palanisamy, K.R.: A new operational matrix for delay via Walsh functions and some aspects of its algebra and applications. In: 5th National Systems Conference, NSC-78, PAU Ludhiana (India), Sept 1978, pp. 60–61

    Google Scholar 

  35. Rao, G.P., Palanisamy, K.R.: Optimal control of time-delay systems via Walsh functions. In: 9th IFIP Conference on Optimisation Techniques, Polish Academy of Sciences, System Research Institute, Poland, Sept 1979

    Google Scholar 

  36. Rao, G.P., Sivakumar, L.: Identification of time-lag systems via Walsh functions. IEEE Trans. Autom. Control AC-24(5), 806–808 (1979)

    Google Scholar 

  37. Rao, G.P., Palanisamy, K.R., Srinivasan, T.: Extension of computation beyond the limit of initial normal interval in Walsh series analysis of dynamical systems. IEEE Trans. Autom. Control AC-25(2), 317–319 (1980)

    Google Scholar 

  38. Rao, G.P., Sivakumar, L.: Transfer function matrix identification in MIMO systems via Walsh functions. Proc. IEEE 69(4), 465–466 (1981)

    Article  Google Scholar 

  39. Rao, G.P., Sivakumar, L.: Piecewise linear system identification via Walsh functions. Int. J. Syst. Sci. 13(5), 525–530 (1982)

    Article  MATH  Google Scholar 

  40. Rao, G.P.: Piecewise Constant Orthogonal Functions and Their Application in Systems and Control. LNC1S, vol. 55. Springer, Berlin (1983)

    Book  Google Scholar 

  41. Rao, G.P., Palanisamy, K.R.: L Walsh stretch matrices and functional differential equations. IEEE Trans. Autom. Control AC-21(1), 272–276 (1982)

    Google Scholar 

  42. Chen, C.F., Hsiao, C.H.: A state space approach to Walsh series solution of linear systems. Int. J. Syst. Sci. 6(9), 833–858 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, C.F., Hsiao, C.H.: Design of piecewise constant gains for optimal control via Walsh functions. IEEE Trans. Autom. Control AC-20(5), 596–603 (1975)

    Google Scholar 

  44. Chen, C.F., Hsiao, C.H.: Walsh series analysis in optimal control. Int. J. Control 21(6), 881–897 (1975)

    Article  MATH  Google Scholar 

  45. Chen, C.F., Hsiao, C.H.: A Walsh series direct method for solving variational problems. J. Franklin Inst. 300(4), 265–280 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, C.F., Hsiao, C.H.: Time domain synthesis via Walsh functions. IEE Proc. 122(5), 565–570 (1975)

    Google Scholar 

  47. Chen, C.F., Tsay, Y.T., Wu, T.T.: Walsh operational matrices for fractional calculus and their application to distributed systems. J. Franklin Inst. 303(3), 267–284 (1977)

    Article  MATH  Google Scholar 

  48. Le Van, T., Tam, L.D.C., Van Houtte, N.: On direct algebraic solutions of linear differential equations using Walsh transforms. IEEE Trans. Circuits Syst. CAS-22(5), 419–422 (1975)

    Google Scholar 

  49. Tzafestas, S.G.: Walsh series approach to lumped and distributed system identification. J. Franklin Inst. 305(4), 199–220 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chen, W.L., Shih, Y.P.: Parameter estimation of bilinear systems via Walsh functions. J. Franklin Inst. 305(5), 249–257 (1978)

    Article  MATH  Google Scholar 

  51. Chen, W.L., Shih, Y.P.: Shift Walsh matrix and delay differential equations. IEEE Trans. Autom. Control AC-23(6), 1023–1028 (1978)

    Google Scholar 

  52. Chen, W.L., Lee, C.L.: Walsh series expansions of composite functions and its applications to linear systems. Int. J. Syst. Sci. 13(2), 219–226 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen, W.L.: Walsh series analysis of multi-delay systems. J. Franklin Inst. 303(4), 207–217 (1982)

    Article  MATH  Google Scholar 

  54. Mahapatra, G.B.: Solution of optimal control problem of linear diffusion equation via Walsh functions. IEEE Trans. Autom. Control AC-25(2), 319–321 (1980)

    Google Scholar 

  55. Paraskevopoulos, P.N., Varoufakis, S.J.: Transfer function determination from impulse response via Walsh functions. Int. J. Circuit Theory Appl. 8(1), 85–89 (1980)

    Article  MATH  Google Scholar 

  56. Moulden, T.H., Scott, M.A.: Walsh spectral analysis for ordinary differential equations: Part 1—Initial value problem. IEEE Trans. Circuits Syst. CAS-35(6), 742–745 (1988)

    Google Scholar 

  57. Deb, Anish, Datta, A.K.: Time response of pulse-fed SISO systems using Walsh operational matrices. Adv. Model. Simul. 8(2), 30–37 (1987)

    Google Scholar 

  58. Deb, A.: On Walsh domain analysis of power-electronic systems. Ph.D. (Tech.) dissertation, University of Calcutta (1989)

    Google Scholar 

  59. Deb, Anish, Sen, S.K., Datta, A.K.: Walsh functions and their applications: a review. IETE Tech. Rev. 9(3), 238–252 (1992)

    Article  Google Scholar 

  60. Lewis, F.L., Mertzios, B.G., Vachtsevanos, G., Christodoulou, M.A.: Analysis of bilinear systems using Walsh functions. IEEE Trans. Autom. Control 35(1), 119–123 (1990)

    Article  MATH  Google Scholar 

  61. Marszalek, W.: Orthogonal functions analysis of singular systems with impulsive responses. Proc. IEE, Part D, Control Theory Appl. 137(2), 84–86 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Dai, H., Sinha, N.K.: Robust coefficient estimation of Walsh functions. Proc. IEE, Part D, Control Theory Appl. 137(6), 357–363 (1990)

    Article  MATH  Google Scholar 

  63. Deb, Anish, Datta, A.K.: Analysis of continuously variable pulse-width modulated system via Walsh functions. Int. J. Syst. Sci. 23(2), 151–166 (1992)

    Article  MATH  Google Scholar 

  64. Deb, Anish, Datta, A.K.: Analysis of pulse-fed power electronic circuits using Walsh functions. Int. J. Electron. 62(3), 449–459 (1987)

    Article  Google Scholar 

  65. Deb, A., Sarkar, G., Sen, S.K., Datta, A.K.: A new method of analysis of chopper-fed DC series motor using Walsh function. In: Proceedings of 4th European Conference on Power Electronics and Applications (EPE ’91), Horence, Italy, 1991

    Google Scholar 

  66. Deb, A., Datta, A.K.: On Walsh/block pulse domain analysis of power electronic circuits Part 1. Continuously phase-controlled rectifier. Int. J. Electron. 79(6), 861–883 (1995)

    Google Scholar 

  67. Deb, A., Datta, A.K.: On Walsh/block pulse domain analysis of power electronic circuits Part 2. Continuously pulse-width modulated inverter. Int. J. Electron. 79(6), 885–895 (1995)

    Google Scholar 

  68. Deb, A., Fountain, D.W.: A note on oscillations in Walsh domain analysis of first order systems. IEEE Trans. Circuits Syst. CAS-38(8), 945–948 (1991)

    Google Scholar 

  69. Rao, G.P., Tzafestas, S.G.: A decade of piecewise constant orthogonal functions in systems and control. Math. Comput. Simul. 27(5 and 6), 389–407 (1985)

    MathSciNet  Google Scholar 

  70. Tzafestas, S.G. (ed.): Walsh functions in signal and systems analysis and design. Van Nostrand Reinhold Co., New York (1985)

    Google Scholar 

  71. Rao, G.P., Srinivasan, T.: Remarks on “Author’s reply” to “Comments on design of piecewise constant gains for optimal control via Walsh functions”. IEEE Trans. Autom. Control AC-23(4), 762–763 (1978)

    Google Scholar 

  72. Chen, W.L., Lee, C.L.: On the convergence of the block-pulse series solution of a linear time-invariant system. Int. J. Syst. Sci. 13(5), 491–498 (1982)

    Google Scholar 

  73. Sloss, G., Blyth, W.F.: A priori error estimates for Corrington’s Walsh function method. J. Franklin Inst. 331B(3), 273–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sannuti, P.: Analysis and synthesis of dynamic systems via block pulse functions. Proc. IEE 124(6), 569–571 (1977)

    Google Scholar 

  75. Shieh, L.A., Yates, R.E., Navarro, J.M.: Representation of continuous time state equations by discrete-time state equations. IEEE Trans. Signal Man Cybern. SMC-8(6), 485–492 (1978)

    Google Scholar 

  76. Srinivasan, T.: Analysis of dynamical systems via block-pulse functions. Ph. D. dissertation, Department of Electrical Engineering, I.I.T., Kharagpur, India (1979)

    Google Scholar 

  77. Rao, G.P., Srinivasan, T.: Analysis and synthesis of dynamic systems containing time delays via block-pulse functions. Proc. IEE 125(9), 1064–1068 (1978)

    MathSciNet  Google Scholar 

  78. Chen, W.L., Jeng, B.S.: Analysis of piecewise constant delay systems via block-pulse functions. Int. J. Syst. Sci. 12(5), 625–633 (1981)

    Article  MATH  Google Scholar 

  79. Hwang, C., Guo, T.Y., Shih, Y.P.: Numerical inversion of multidimensional Laplace transforms via block-pulse function. Proc. IEE, Part. D, Control Theory Appl. 130(5), 250–254 (1983)

    Article  MATH  Google Scholar 

  80. Marszalek, W.: Two-dimensional inverse Laplace transform via block-pulse functions method. Int. J. Syst. Sci. 14, 1311–1317 (1983)

    Article  MATH  Google Scholar 

  81. Jiang, Z.H.: New approximation method for inverse Laplace transforms using block-pulse functions. Int. J. Syst. Sci. 18(10), 1873–1888 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. Shieh, L.A., Yates, R.E.: Solving inverse Laplace transform, linear and nonlinear state equations using block-pulse functions. Comput. Electr. Eng. 6, 3–17 (1979)

    Article  MATH  Google Scholar 

  83. Rao, G.P., Srinivasan, T.: An optimal method of solving differential equations characterizing the dynamic of a current collection system for an electric locomotive. J. Inst. Math. Appl. 25(4), 329–342 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  84. Chen, W.L.: Block-pulse series analysis of scaled systems. Int. J. Syst. Sci. 12(7), 885–891 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  85. Sinha, N.K., Zhou, Q.: Discrete-time approximation of multivariable continuous-time systems. Proc. IEE, Part D, Control Theory Appl. 130(3), 103–110 (1983)

    Article  MATH  Google Scholar 

  86. Wang, C.-H.: On the generalisation of block pulse operational matrices for fractional and operational calculus. J. Franklin Inst. 315(2), 91–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  87. Palanisamy, K.R.: A note on block-pulse function operational matrix for integration. Int. J. Syst. Sci. 14(11), 1287–1290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hsu, N.-S., Cheng, B.: Analysis and optimal control of time-varying linear systems via block-pulse functions. Int. J. Control 33(6), 1107–1122 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  89. Kawaji, S.: Block-pulse series analysis of linear systems incorporating observers. Int. J. Control 37(5), 1113–1120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  90. Shih, Y.P., Chia, W.K.: Parameter estimation of delay systems via block-pulse functions. J. Dyn. Syst. Measur. Control 102(3), 159–162 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  91. Jan, Y.G., Wong, K.M.: Bilinear system identification by block pulse functions. J. Franklin Inst. 512(5), 349–359 (1981)

    Article  MATH  Google Scholar 

  92. Cheng, B., Hsu, N.-S.: Analysis and parameter estimation of bilinear systems via block-pulse functions. Int. J. Control 36(1), 53–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  93. Rao, G.P., Srinivasan, T.: Multidimensional block pulse functions and their use in the study of distributed parameter systems. Int. J. Syst. Sci. 11(6), 689–708 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  94. Nath, A.K., Lee, T.T.: On the multidimensional extension of block-pulse functions and their applications. Int. J. Syst. Sci. 14(2), 201–208 (1983)

    Article  MATH  Google Scholar 

  95. Hsu, N.-S., Cheng, B.: Identification of nonlinear distributed systems via block pulse functions. Int. J. Control 36(2), 281–291 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  96. Kwong, C.P., Chen, C.F.: Linear feedback systems identification via block pulse functions. Int. J. Syst. Sci. 12(5), 635–642 (1981)

    Article  MATH  Google Scholar 

  97. Palanisamy, K.R., Bhattacharya, D.K.: System identification via block-pulse functions. Int. J. Syst. Sci. 12(5), 643–647 (1981)

    Article  MathSciNet  Google Scholar 

  98. Palanisamy, K.R., Bhattacharya, D.K.: Analysis of stiff systems via single step method of block-pulse functions. Int. J. Syst. Sci. 13(9), 961–968 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  99. Kalat, J., Paraskevopoulos, P.N.: Solution of multipoint boundary value problems via block pulse functions. J. Franklin Inst. 324(1), 73–81 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  100. Kung, F.C., Chen, S.Y.: Solution of integral equations using a set of block pulse functions. J. Franklin Inst. 306(4), 283–291 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  101. Cheng, B., Hsu, N.S.: Analysis and parameter estimation of bilinear systems via block pulse functions. Int. J. Control 36(1), 53–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  102. Deb, A., Sarkar, G., Biswas, A., Mandal, P.: Numerical instability of deconvolution operation via block pulse functions. J. Franklin Inst. 345, 319–327 (2008)

    Article  MATH  Google Scholar 

  103. Hoseini, S.M., Soleimani, K.: Analysis of time delay systems via new triangular functions. J. Appl. Math. 5(19) (2010)

    Google Scholar 

  104. Babolian, Z.M., Saeed, H.-V.: Numerical solution of nonlinear Volterra-Fredholm integro-differential equations via direct method using triangular functions. Comput. Math. Appl. 58(2), 239–247 (2009)

    Google Scholar 

  105. Han, Z., Li, S., Cao, Q.: Triangular orthogonal functions for nonlinear constrained optimal control problems. Res. J. Appl. Sci. Eng. Technol. 4(12), 1822–1827 (2012)

    Google Scholar 

  106. Almasieh, H., Roodaki, M.: Triangular functions method for the solution of Fredholm integral equations system. Ain Shams Eng. J. 3(4), 411–416 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Deb .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deb, A., Roychoudhury, S., Sarkar, G. (2016). Non-sinusoidal Orthogonal Functions in Systems and Control. In: Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions. Studies in Systems, Decision and Control, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-26684-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26684-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26682-4

  • Online ISBN: 978-3-319-26684-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics