Skip to main content

Efficient Protocol for the Identification of Hypoxic Cell Radiosensitisers

  • Conference paper
  • First Online:
Book cover Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 899))

Abstract

An evolution in radiotherapy practice is leading to greater use of stereotactic body radiotherapy (SBRT), raising the prospect of increased hypoxic cell radioresistance. New clinical interest in nitroimidazole radiosensitisers, combined with appropriate biomarkers, signals a revival for radiosensitisers in the context of SBRT. Our interest in modifiers of radiation therapy led us to revisit this area and we have identified a new class of nitroimidazole radiosensitiser. We have developed an abbreviated screening protocol suitable for an academic drug discovery laboratory which allows expeditious triage of compounds with poor physicochemical and in vitro properties and combines in vitro radiosensitisation data with tumour pharmacokinetic data to efficiently select candidates for further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch CJ, Evans SM. Optimizing hypoxia detection and treatment strategies. Semin Nucl Med. 2015;45:163–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dhani N, Fyles A, Hedley D, et al. The clinical significance of hypoxia in human cancers. Semin Nucl Med. 2015;45:110–21.

    Article  PubMed  Google Scholar 

  3. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  4. Pennacchietti S, Michieli P, Galluzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3:347–61.

    Article  PubMed  Google Scholar 

  5. Chang Q, Jurisica I, Do T, et al. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res. 2011;71:3110–20.

    Article  CAS  PubMed  Google Scholar 

  6. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14:191–201.

    Article  CAS  PubMed  Google Scholar 

  7. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011;11:393–410.

    Article  CAS  PubMed  Google Scholar 

  9. Gray LH, Conger AD, Ebert M, et al. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

    Article  CAS  PubMed  Google Scholar 

  10. Evans SM, Du KL, Chalian AA, et al. Patterns and levels of hypoxia in head and neck squamous cell carcinomas and their relationship to patient outcome. Int J Radiat Oncol Biol Phys. 2007;69:1024–31.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koukourakis MI, Bentzen SM, Giatromanolaki A, et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J Clin Oncol. 2006;24:727–35.

    Article  CAS  PubMed  Google Scholar 

  12. Nordsmark M, Bentzen SM, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005;77:18–24.

    Article  PubMed  Google Scholar 

  13. Overgaard J, Eriksen JG, Nordsmark M, et al. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 2005;6:757–64.

    Article  CAS  PubMed  Google Scholar 

  14. Fyles A, Milosevic M, Hedley D, et al. Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol. 2002;20:680–7.

    Article  CAS  PubMed  Google Scholar 

  15. Brown JM, Diehn M, Loo BW. Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys. 2010;78:323–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hoogsteen IJ, Marres HA, van der Kogel AJ, et al. The hypoxic tumour microenvironment, patient selection and hypoxia-modifying treatments. Clin Oncol (R Coll Radiol). 2007;19:385–96.

    Article  CAS  Google Scholar 

  17. Moeller BJ, Richarson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007;26:241–8.

    Article  CAS  PubMed  Google Scholar 

  18. Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25:4066–74.

    Article  PubMed  Google Scholar 

  19. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck-a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32.

    Article  PubMed  Google Scholar 

  20. Bennett MH, Feldmeier J, Smee R, et al. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev. 2012;4:CD005007. doi:10.1002/14651858.CD005007.pub3.

    PubMed  Google Scholar 

  21. Kaanders JH, Bussink J, van der Kogel AJ. ARCON: a novel biology-based approach in radiotherapy. Lancet Oncol. 2002;3:728–37.

    Article  PubMed  Google Scholar 

  22. Dische S. Chemical sensitisers for hypoxic cells: a decade of experience in clinical radiotherapy. Radiother Oncol. 1985;3:97–115.

    Article  CAS  PubMed  Google Scholar 

  23. Overgaard J. Clinical evaluation of nitroimidazoles as modifiers of hypoxia in solid tumors. Oncol Res. 1994;6:509–18.

    CAS  PubMed  Google Scholar 

  24. Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin Oncol. 2007;19:397–417.

    Article  CAS  Google Scholar 

  25. Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.

    Article  CAS  PubMed  Google Scholar 

  26. Adams GE, Clarke ED, Flockhart IR, et al. Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency. Int J Radiat Biol Relat Stud Phys Chem Med. 1979;35:133–50.

    Article  CAS  PubMed  Google Scholar 

  27. Urtasun RC, Band P, Chapman JD, et al. Radiation and high dose metronidazole in supratentorial glioblastomas. N Engl J Med. 1976;294:1364–7.

    Article  CAS  PubMed  Google Scholar 

  28. Urtasun R, Feldstein ML, Partington J, et al. Radiation and nitroimidazoles in supratentorial high grade gliomas: a second clinical trial. Br J Cancer. 1982;46:101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grigsby PW, Winter K, Wasserman TH, et al. Irradiation with or without misonidazole for patients with stages IIIB and IVA carcinoma of the cervix: final results of RTOG 80–05. Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1999;44:513–7.

    Article  CAS  PubMed  Google Scholar 

  30. Saunders M, Dische S. Clinical results of hypoxic cell radiosensitisation from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide. Br J Cancer. 1996;27:S271–8.

    CAS  Google Scholar 

  31. Lee DJ, Cosmatos D, Marcial VA, et al. Results of an RTOG phase III trial (RTOG 85–27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys. 1995;32:567–76.

    Article  CAS  PubMed  Google Scholar 

  32. Nishimura Y, Nakagawa K, Takeda K, et al. Phase I/II trial of sequential chemoradiotherapy using a novel hypoxic cell radiosensitizer, doranidazole (PR-350), in patients with locally advanced non-small-cell lung Cancer (WJTOG-0002). Int J Radiat Oncol Biol Phys. 2007;69:786–92.

    Article  CAS  PubMed  Google Scholar 

  33. Karasawa K, Sunamura M, Okamoto A, et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebo-controlled randomised study. Radiother Oncol. 2008;87:326–30.

    Article  CAS  PubMed  Google Scholar 

  34. Overgaard J, Hansen HS, Overgaard M, et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5–85. Radiother Oncol. 1998;46:135–46.

    Article  CAS  PubMed  Google Scholar 

  35. Cole S, Stratford IJ, Adams GE, et al. Dual-function 2-nitroimidazoles as hypoxic cell radiosensitizers and bioreductive cytotoxins: in vivo evaluation in KHT murine sarcomas. Radiat Res. 1990;124:S38–43.

    Article  CAS  PubMed  Google Scholar 

  36. Cole S, Stratford IJ, Fielden EM, et al. Dual function nitroimidazoles less toxic than RSU 1069: selection of candidate drugs for clinical trial (RB 6145 and/or PD 130908. Int J Radiat Oncol Biol Phys. 1992;22:545–8.

    Article  CAS  PubMed  Google Scholar 

  37. Jenkins TC, Naylor MA, O’Neill P, et al. Synthesis and evaluation of alpha-[[(2-haloethyl)amino]methyl]-2-nitro-1H-imidazole-1-ethanols as prodrugs of alpha-[(1-aziridinyl)methyl]-2-nitro-1H-imidazole-1-ethanol (RSU-1069) and its analogues which are radiosensitizers and bioreductively activated cytotoxins. J Med Chem. 1990;33:2603–10.

    Article  CAS  PubMed  Google Scholar 

  38. Duan JX, Jiao H, Kaizerman J, et al. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J Med Chem. 2008;51:2412–20.

    Article  CAS  PubMed  Google Scholar 

  39. Sun JD, Liu Q, Wang J, et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res. 2012;18:758–70.

    Article  CAS  PubMed  Google Scholar 

  40. Chawla SP, Cranmer LD, Van Tine BA, et al. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol. 2014;32:3299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borad MJ, Reddy SG, Bahary N, et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2015;33:1475–81.

    Article  CAS  PubMed  Google Scholar 

  42. Brown JM. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer. 1993;67:1163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rischin D, Hicks RJ, Fisher R, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol. 2006;24:2098–104.

    Article  PubMed  Google Scholar 

  44. Peters LJ, O’Sullivan B, Giralt J, et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol. 2010;28:2996–3001.

    Article  PubMed  Google Scholar 

  45. Trinkaus ME, Hicks RJ, Young RJ, et al. Correlation of p16 status, hypoxic imaging using [18F]-misonidazole positron emission tomography and outcome in patients with loco-regionally advanced head and neck cancer. J Med Imaging Radiat Oncol. 2014;58:89–97.

    Article  PubMed  Google Scholar 

  46. Rischin D, Peters LJ, O’Sullivan B, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol. 2010;28:2989–95.

    Article  CAS  PubMed  Google Scholar 

  47. Hay MP, Hicks KO, Pchalek K, et al. Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins. J Med Chem. 2008;51:6853–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hicks KO, Siim BG, Jaiswal JK, et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res. 2010;16:4946–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Foehrenbacher A, Su J, et al. The 2-nitroimidazole EF5 is a biomarker for oxidoreductases that activate bioreductive prodrug CEN-209 under hypoxia. Clin Cancer Res. 2012;18:1684–95.

    Article  CAS  PubMed  Google Scholar 

  50. Le QT, Fisher R, Oliner KS, et al. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res. 2012;18:1798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lim AM, Rischin D, Fisher R, et al. Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin Cancer Res. 2012;18:301–7.

    Article  CAS  PubMed  Google Scholar 

  52. Horsman MR, Mortensen LS, Petersen JB, et al. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87.

    Article  CAS  PubMed  Google Scholar 

  53. Lee N, Nehmeh S, Schoder H, et al. Prospective trial incorporating pre-/mid-treatment [(18)F]-misonidazole positron emission tomography for head-and-neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2009;75:101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dubois LJ, Lieuwes NG, Janssen MH, et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A. 2011;108:14620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Loon J, Janssen MHM, Ollers M, et al. PET imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imaging. 2010;37:1663–8.

    Article  PubMed  Google Scholar 

  56. Komar G, Seppanen M, Eskola O, et al. 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med. 2008;49:1944–51.

    Article  PubMed  Google Scholar 

  57. Buffa FM, Harris AL, West CM, et al. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer. 2010;102:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chi JT, Wang Z, Nuyten DS, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 2006;3:e47.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Toustrup K, Sorensen BS, Alsner J, et al. Hypoxia gene expression signatures as prognostic and predictive markers in head and neck radiotherapy. Semin Radiat Oncol. 2012;22:119–27.

    Article  PubMed  Google Scholar 

  60. Toustrup K, Sorensen BS, Nordsmark M, et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011;71:5923–31.

    Article  CAS  PubMed  Google Scholar 

  61. Winter SC, Buffa FM, Silva P, et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 2007;67:3441–9.

    Article  CAS  PubMed  Google Scholar 

  62. Toustrup K, Sorensen BS, Lassen P, et al. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol. 2012;102:122–9.

    Article  CAS  PubMed  Google Scholar 

  63. Barton MB, Jacob S, Shafiq J, et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol. 2014;112:140–4.

    Article  PubMed  Google Scholar 

  64. Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lo SS, Fakiris AJ, Chang EL, et al. Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol. 2010;7:44–54.

    Article  PubMed  Google Scholar 

  66. Carlson DJ, Keall PJ, Loo Jr BW, et al. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys. 2011;79:1188–95.

    Article  PubMed  Google Scholar 

  67. Adams GE. Hypoxia-mediated drugs for radiation and chemotherapy. Cancer. 1981;48:696–707.

    Article  CAS  PubMed  Google Scholar 

  68. Nahum AE. The radiobiology of hypofractionation. Clin Oncol (R Coll Radiol). 2015;27:260–9.

    Article  Google Scholar 

  69. Harrington KJ, Billingham LJ, Brunner TB, et al. Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer. 2011;105:628–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar P, Shustov G, Liang H, et al. Design, synthesis, and preliminary biological evaluation of 6-O-glucose-azomycin adducts for diagnosis and therapy of hypoxic tumors. J Med Chem. 2012;55:6033–46.

    Article  CAS  PubMed  Google Scholar 

  71. Nakae T, Uto Y, Tanaka M, et al. Design, synthesis, and radiosensitizing activities of sugar-hybrid hypoxic cell radiosensitizers. Bioorg Med Chem. 2008;16:675–82.

    Article  CAS  PubMed  Google Scholar 

  72. Uto Y, Nagasawa H, Jin CZ, et al. Design of antiangiogenic hypoxic cell radiosensitizers: 2-nitroimidazoles containing a 2-aminomethylene-4-cyclopentene-1,3-dione moiety. Bioorg Med Chem. 2008;16:6042–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonnet M, Hong CR, Gu Y, et al. Novel nitroimidazole alkylsulfonamides as hypoxic cell radiosensitisers. Bioorg Med Chem. 2014;22:2123–32.

    Article  CAS  PubMed  Google Scholar 

  74. Honess DJ, Wasserman TH, Workman P, et al. Additivity of radiosensitization by the combination of SR 2508 (etanidazole) and Ro 03–8799 (pimonidazole) in a murine tumor system. Int J Radiat Oncol Biol Phys. 1988;15:671–5.

    Article  CAS  PubMed  Google Scholar 

  75. Stone HB, Hirst VK, Cribbs R, et al. A comparison of radiosensitization by etanidazole and pimonidazole in mouse tumors. Int J Radiat Oncol Biol Phys. 1991;20:987–95.

    Article  CAS  PubMed  Google Scholar 

  76. Hicks KO, Pruijn FB, Secomb TW, et al. Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J Natl Cancer Inst. 2006;98:1118–28.

    Article  CAS  PubMed  Google Scholar 

  77. Adams GE, Clarke ED, Gray P, et al. Structure-activity relationships in the development of hypoxic cell radiosensitizers. II. Cytotoxicity and therapeutic ratio. Int J Radiat Biol Relat Stud Phys Chem Med. 1979;35:151–60.

    Article  CAS  PubMed  Google Scholar 

  78. Cross P, Marshall ES, Baguley BC, et al. Proliferative assays for the assessment of radiosensitivity of tumor cell lines using 96-well microcultures. Radiat Oncol Investig. 1994;1:261–9.

    Article  Google Scholar 

  79. Hicks KO, Pruijn FB, Sturman JR, et al. Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures. Cancer Res. 2003;63:5970–7.

    CAS  PubMed  Google Scholar 

  80. Hicks KO, Pruijn FB, Baguley BC, et al. Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. J Pharmacol Exp Ther. 2001;297:1088–98.

    CAS  PubMed  Google Scholar 

  81. Pruijn FB, Patel K, Hay MP, et al. Prediction of tumour tissue diffusion coefficients of hypoxia-activated prodrugs from physicochemical parameters. Aust J Chem. 2008;61:687–93.

    Article  CAS  Google Scholar 

  82. Pruijn FB, Sturman JR, Liyanage HDS, et al. Extravascular transport of drugs in tumor tissue: Effect of lipophilicity on diffusion of tirapazamine analogs in multicellular layer cultures. J Med Chem. 2005;48:1079–87.

    Article  CAS  PubMed  Google Scholar 

  83. Hicks KO. Introducing drug transport early in the design of hypoxia selective anticancer agents using a mathematical modelling approach. In: D’Onofrio A, Cerrai P, Gandolfi A, editors. New challenges for cancer systems biomedicine. Italy: Springer; 2012. p. 337–54.

    Chapter  Google Scholar 

  84. Wardman P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data. 1989;18:1637–755.

    Article  CAS  Google Scholar 

  85. Hunter FW, Wang J, Patel R, et al. Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: Comparison with other hypoxia-activated prodrugs. Biochem Pharmacol. 2012;83:574–85.

    Article  CAS  PubMed  Google Scholar 

  86. Hicks KO, Fleming Y, Siim BG, et al. Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. Int J Radiat Oncol Biol Phys. 1998;42:641–9.

    Article  CAS  PubMed  Google Scholar 

  87. Hicks KO, Ohms SJ, van Zijl PL, et al. An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours. Br J Cancer. 1997;76:894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu Y, Wilson WR. Rapid and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry analysis of the novel anticancer agent PR-104 and its major metabolites in human plasma: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3181–6.

    Article  CAS  PubMed  Google Scholar 

  89. Patel K, Lewiston D, Gu Y, et al. Analysis of the hypoxia-activated dinitrobenzamide mustard phosphate prodrug PR-104 and its alcohol metabolite PR-104A in plasma and tissues by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;856:302–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Thorsten Melcher (J&J Innovation) and Professor Bill Wilson for helpful discussions and thank Dr Adrian Blaser, Ms Karen Tan and Mr Sisira Kumara for technical assistance. The authors acknowledge support from the University of Auckland’s Biopharma Thematic Research Initiative, UniServices Investment/Ministry of Business, Innovation and Employment Pre-Seed Accelerator Fund and the Cancer Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Hay Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hong, C.R., Wang, J., Hicks, K.O., Hay, M.P. (2016). Efficient Protocol for the Identification of Hypoxic Cell Radiosensitisers. In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_16

Download citation

Publish with us

Policies and ethics