Skip to main content

Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 899))

Abstract

Regions of hypoxia in tumours can be modelled in vitro in 2D cell cultures with a hypoxic chamber or incubator in which oxygen levels can be regulated. Although this system is useful in many respects, it disregards the additional physiological gradients of the hypoxic microenvironment, which result in reduced nutrients and more acidic pH. Another approach to hypoxia modelling is to use three-dimensional spheroid cultures. In spheroids, the physiological gradients of the hypoxic tumour microenvironment can be inexpensively modelled and explored. In addition, spheroids offer the advantage of more representative modelling of tumour therapy responses compared with 2D culture. Here, we review the use of spheroids in hypoxia tumour biology research and highlight the different methodologies for spheroid formation and how to obtain uniformity. We explore the challenge of spheroid analyses and how to determine the effect on the hypoxic versus normoxic components of spheroids. We discuss the use of high-throughput analyses in hypoxia screening of spheroids. Furthermore, we examine the use of mathematical modelling of spheroids to understand more fully the hypoxic tumour microenvironment.

*These authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl):510–7.

    Google Scholar 

  2. Choudhry H, Schodel J, Oikonomopoulos S, et al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep. 2014;15(1):70–6.

    Article  CAS  PubMed  Google Scholar 

  3. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:947–71.

    Article  Google Scholar 

  4. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  5. Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 2013;85(9):1219–26.

    Article  CAS  PubMed  Google Scholar 

  6. Multhoff G, Radons J, Vaupel P. Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated radioresistance. Cancers (Basel). 2014;6(2):813–28.

    Article  CAS  Google Scholar 

  7. McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med. 2015;7(4):368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirschhaeuser F, Menne H, Dittfeld C, et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  9. McIntyre A, Patiar S, Wigfield S, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res. 2012;18(11):3100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  CAS  PubMed  Google Scholar 

  11. Bingle L, Lewis CE, Corke KP, et al. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer. 2006;94(1):101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ivanov DP, Parker TL, Walker DA, et al. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol. 2015;205:3–13.

    Article  CAS  PubMed  Google Scholar 

  13. Dolznig H, Rupp C, Puri C, et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol. 2011;179(1):487–501.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tang XH, Lucas JE, Chen JLY, et al. Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Cancer Res. 2012;72(2):491–502.

    Article  CAS  PubMed  Google Scholar 

  15. Ellingsen C, Walenta S, Hompland T, et al. The microenvironment of cervical carcinoma xenografts: associations with lymph node metastasis and its assessment by DCE-MRI. Transl Oncol. 2013;6(5):607–17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grimshaw MJ, Cooper L, Papazisis K, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10(3):R52.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koo BK, Stange DE, Sato T, et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods. 2012;9(1):81–3.

    Article  CAS  Google Scholar 

  18. Ivascu A, Kubbies M. Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J Biomol Screen. 2006;11(8):922–32.

    Article  CAS  PubMed  Google Scholar 

  19. Fennema E, Rivron N, Rouwkema J, et al. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  20. Leek RD, Stratford I, Harris AL. The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway. Cancer Res. 2005;65(10):4147–52.

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int J Radiat Biol. 2007;83(11-12):849–71.

    Article  CAS  PubMed  Google Scholar 

  22. Timmins NE, Nielsen LK. Generation of multicellular tumor spheroids by the hanging-drop method. Methods Mol Med. 2007;140:141–51.

    Article  CAS  PubMed  Google Scholar 

  23. Kelm JM, Timmins NE, Brown CJ, et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  24. Hsiao AY, Tung YC, Qu X, et al. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids. Biotechnol Bioeng. 2012;109(5):1293–304.

    Article  CAS  PubMed  Google Scholar 

  25. Napolitano AP, Chai P, Dean DM, et al. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 2007;13(8):2087–94.

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu K, Kusamori K, Nishikawa M, et al. Poly(N-isopropylacrylamide)-coated microwell arrays for construction and recovery of multicellular spheroids. J Biosci Bioeng. 2013;115(6):695–9.

    Article  CAS  PubMed  Google Scholar 

  27. Torisawa YS, Chueh BH, Huh D, et al. Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip. 2007;7(6):770–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wu LY, Di Carlo D, Lee LP. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices. 2008;10(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  29. Torisawa YS, Takagi A, Nashimoto Y, et al. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials. 2007;28(3):559–66.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshii Y, Waki A, Yoshida K, et al. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials. 2011;32(26):6052–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshii Y, Furukawa T, Waki A, et al. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials. 2015;51:278–89.

    Article  CAS  PubMed  Google Scholar 

  32. Tofilon PJ, Arundel CM, Deen DF. Response to BCNU of spheroids grown from mixtures of drug-sensitive and drug-resistant cells. Cancer Chemother Pharmacol. 1987;20(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  33. Djordjevic B, Lange CS. Cell-cell interactions in spheroids maintained in suspension. Acta Oncol. 2006;45(4):412–20.

    Article  CAS  PubMed  Google Scholar 

  34. Hauptmann S, Zwadlo-Klarwasser G, Jansen M, et al. Macrophages and multicellular tumor spheroids in co-culture: a three-dimensional model to study tumor-host interactions. Evidence for macrophage-mediated tumor cell proliferation and migration. Am J Pathol. 1993;143(5):1406–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gottfried E, Kunz-Schughart LA, Andreesen R, et al. Brave little world: spheroids as an in vitro model to study tumor-immune-cell interactions. Cell Cycle. 2006;5(7):691–5.

    Article  CAS  PubMed  Google Scholar 

  36. Timmins NE, Dietmair S, Nielsen LK. Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis. 2004;7(2):97–103.

    Article  PubMed  Google Scholar 

  37. Vermeulen S, Van Marck V, Van Hoorde L, et al. Regulation of the invasion suppressor function of the cadherin/catenin complex. Pathol Res Pract. 1996;192(7):694–707.

    Article  CAS  PubMed  Google Scholar 

  38. Offner FA, Schiefer J, Wirtz HC, et al. Tumour-cell-endothelial interactions: free radicals are mediators of melanoma-induced endothelial cell damage. Virchows Arch. 1996;428(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  39. Kunz-Schughart LA, Heyder P, Schroeder J, et al. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res. 2001;266(1):74–86.

    Article  CAS  PubMed  Google Scholar 

  40. Ivanov DP, Parker TL, Walker DA, et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS One. 2014;9(8), e103817.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rafajova M, Zatovicova M, Kettmann R, et al. Induction by hypoxia combined with low glucose or low bicarbonate and high posttranslational stability upon reoxygenation contribute to carbonic anhydrase IX expression in cancer cells. Int J Oncol. 2004;24(4):995–1004.

    CAS  PubMed  Google Scholar 

  42. Yakymchuk OM, Perepelytsina OM, Dobrydnev AV, et al. Effect of single-walled carbon nanotubes on tumor cells viability and formation of multicellular tumor spheroids. Nanoscale Res Lett. 2015;10:150.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Friedrich J, Seidel C, Ebner R, et al. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4(3):309–24.

    Article  CAS  PubMed  Google Scholar 

  44. Ho WY, Yeap SK, Ho CL, et al. Development of multicellular tumor spheroid (MCTS) culture from breast cancer cell and a high throughput screening method using the MTT assay. PLoS One. 2012;7(9):e44640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.

    Article  CAS  PubMed  Google Scholar 

  46. Abuelba H, Cotrutz CE, Stoica BA, et al. In vitro evaluation of curcumin effects on breast adenocarcinoma 2D and 3D cell cultures. Rom J Morphol Embryol. 2015;56(1):71–6.

    PubMed  Google Scholar 

  47. Friedrich J, Eder W, Castaneda J, et al. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen. 2007;12(7):925–37.

    Article  CAS  PubMed  Google Scholar 

  48. Senavirathna LK, Fernando R, Maples D, et al. Tumor SPHEROIDS as an in vitro model for determining the therapeutic response to proton beam radiotherapy and thermally sensitive nanocarriers. Theranostics. 2013;3(9):687–91.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Freyer JP, Sutherland RM. Proliferative and clonogenic heterogeneity of cells from EMT6/Ro multicellular spheroids induced by the glucose and oxygen supply. Cancer Res. 1986;46(7):3513–20.

    CAS  PubMed  Google Scholar 

  50. Roa WH, Miller GG, McEwan AJ, et al. Targeted radiotherapy of multicell neuroblastoma spheroids with high specific activity [125I]meta-iodobenzylguanidine. Int J Radiat Oncol Biol Phys. 1998;41(2):425–32.

    Article  CAS  PubMed  Google Scholar 

  51. Li Q, Chen C, Kapadia A, et al. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J Biomol Screen. 2011;16(2):141–54.

    Article  CAS  PubMed  Google Scholar 

  52. Wittig R, Richter V, Wittig-Blaich S, et al. Biosensor-expressing spheroid cultures for imaging of drug-induced effects in three dimensions. J Biomol Screen. 2013;18(6):736–43.

    Article  CAS  PubMed  Google Scholar 

  53. Wenzel C, Riefke B, Grundemann S, et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res. 2014;323(1):131–43.

    Article  CAS  PubMed  Google Scholar 

  54. Swietach P, Patiar S, Supuran CT, et al. The role of carbonic anhydrase 9 in regulating extracellular and intracellular ph in three-dimensional tumor cell growths. J Biol Chem. 2009;284(30):20299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dmitriev RI, Zhdanov AV, Nolan YM, et al. Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials. 2013;34(37):9307–17.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang S, Hosaka M, Yoshihara T, et al. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res. 2010;70(11):4490–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi H, Man S, Graham CH, et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci U S A. 1993;90(8):3294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abbott A. Cell culture: biology’s new dimension. Nature. 2003;424(6951):870–2.

    Article  CAS  PubMed  Google Scholar 

  59. Herrmann R, Fayad W, Schwarz S, et al. Screening for compounds that induce apoptosis of cancer cells grown as multicellular spheroids. J Biomol Screen. 2008;13(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  60. Mathews LA, Keller JM, Goodwin BL, et al. A 1536-well quantitative high-throughput screen to identify compounds targeting cancer stem cells. J Biomol Screen. 2012;17(9):1231–42.

    Article  PubMed  Google Scholar 

  61. Kang HJ, Kim IH, Sung CO, et al. Expression of carbonic anhydrase 9 is a novel prognostic marker in resectable hepatocellular carcinoma. Virchows Arch. 2015;466(4):403–13.

    Article  CAS  PubMed  Google Scholar 

  62. Tailor TD, Hanna G, Yarmolenko PS, et al. Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther. 2010;9(6):1798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Snell CE, Turley H, McIntyre A, et al. Proline-hydroxylated hypoxia-inducible factor 1alpha (HIF-1alpha) upregulation in human tumours. PLoS One. 2014;9(2):e88955.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157(2):411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Durand RE, Raleigh JA. Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res. 1998;58(16):3547–50.

    CAS  PubMed  Google Scholar 

  66. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22.

    Article  CAS  PubMed  Google Scholar 

  67. Birner P, Ritzi M, Musahl C, et al. Immunohistochemical detection of cell growth fraction in formalin-fixed and paraffin-embedded murine tissue. Am J Pathol. 2001;158(6):1991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gown AM, Willingham MC. Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem. 2002;50(4):449–54.

    Article  CAS  PubMed  Google Scholar 

  69. Gray LH, Conger AD, Ebert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26(312):638–48.

    Article  CAS  PubMed  Google Scholar 

  70. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  71. Kelly CJ, Hussien K, Muschel RJ. 3D tumour spheroids as a model to assess the suitability of [18F]FDG-PET as an early indicator of response to PI3K inhibition. Nucl Med Biol. 2012;39(7):986–92.

    Article  CAS  PubMed  Google Scholar 

  72. Grimes DR, Kelly C, Bloch K, et al. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J R Soc Interface. 2014;11(92):20131124.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Burton AC. Rate of growth of solid tumours as a problem of diffusion. Growth. 1966;30(2):157–76.

    CAS  PubMed  Google Scholar 

  74. Boag JW (1977) Oxygen diffusion in tumour capillary networks. Bibl Anat(15 Pt 1):266–9.

    Google Scholar 

  75. Mcelwain DLS, Ponzo PJ. Model for growth of a solid tumor with nonuniform oxygen-consumption. Math Biosci. 1977;35(3-4):267–79.

    Article  Google Scholar 

  76. Marusic M, Bajzer Z, Freyer JP, et al. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 1994;27(2):73–94.

    Article  CAS  PubMed  Google Scholar 

  77. Conger AD, Ziskin MC. Growth of mammalian multicellular tumor spheroids. Cancer Res. 1983;43(2):556–60.

    CAS  PubMed  Google Scholar 

  78. Freyer JP. Role of necrosis in regulating the growth saturation of multicellular spheroids. Cancer Res. 1988;48(9):2432–9.

    CAS  PubMed  Google Scholar 

  79. Steel GG. Growth kinetics of tumours : cell population kinetics in relation to the growth and treatment of cancer. Oxford: Clarendon Press; 1977.

    Google Scholar 

  80. Swan GW. Role of optimal control theory in cancer chemotherapy. Math Biosci. 1990;101(2):237–84.

    Article  CAS  PubMed  Google Scholar 

  81. Wheldon TE. Mathematical models in cancer research. Bristol: Hilger; 1988.

    Google Scholar 

  82. Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumor growth. SIAM Rev. 2007;49(2):179–208.

    Article  Google Scholar 

  83. Sherratt JA, Chaplain MAJ. A new mathematical model for avascular tumour growth. J Math Biol. 2001;43(4):291–312.

    Article  CAS  PubMed  Google Scholar 

  84. Ward JP, King JR. Mathematical modelling of avascular-tumour growth. IMA J Math Appl Med Biol. 1997;14(1):39–69.

    Article  CAS  PubMed  Google Scholar 

  85. Jones AF, Byrne HM, Gibson JS, et al. A mathematical model of the stress induced during avascular tumour growth. J Math Biol. 2000;40(6):473–99.

    Article  CAS  PubMed  Google Scholar 

  86. Muellerklieser W. Method for the determination of oxygen-consumption rates and diffusion-coefficients in multicellular spheroids. Biophys J. 1984;46(3):343–8.

    Article  CAS  Google Scholar 

  87. Koch CJ, Evans SM, Lord EM. Oxygen dependence of cellular uptake of Ef5 [2-(2-Nitro-1h-Imidazol-1-Yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide]—analysis of drug adducts by fluorescent-antibodies vs bound radioactivity. Br J Cancer. 1995;72(4):869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan McIntyre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Leek, R., Grimes, D.R., Harris, A.L., McIntyre, A. (2016). Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia. In: Koumenis, C., Coussens, L., Giaccia, A., Hammond, E. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 899. Springer, Cham. https://doi.org/10.1007/978-3-319-26666-4_10

Download citation

Publish with us

Policies and ethics