Skip to main content

Long-Term Storable Microfluidic Whole-Cell Biosensor Using Physarum polycephalum for Toxicity Prescreening

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

A storable whole-cell biosensor has been a challenge in the whole-cell biosensor research. We developed a long-term storable whole-cell biosensor using the true slime mould, Physarum polycephalum, for toxicity detection. The cell is interfaced to a microfluidic device with impedance measurement system. The oscillatory activity of the cell when exposed to various concentrations of 2,4-dinitrophenol (DNP) is investigated. It has been demonstrated that the Physarum cell can be dry-stored in the device for months and used as bionsensor after revived with rehydration. This is the first implementation of storable whole-cell biosensor for toxicity detection use, and it suggests that the development of long-term storable, and potentially portable, whole-cell biosensor for general toxicity prescreening is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, D.S.: Mechanisms of cell shape change: the cytomechanics of cellular response to chemical environment and mechanical loading. J. Cell Biol. 117(1), 83–93 (1992)

    Article  Google Scholar 

  2. Allen, P.J., Price, W.H.: The relation between respiration and protoplasmic flow in the slime mold, Physarum polycephalum. Am. J. Bot. 37(5), 393–402 (1950)

    Article  Google Scholar 

  3. Bjerketorp, J., Hakansson, S., Belkin, S., Jansson, J.K.: Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr. Opin. Biotechnol. 17, 43–49 (2006)

    Article  Google Scholar 

  4. Bousse, L.: Whole cell biosensors. Sens. Actuators B Chem. 34(1–3), 270–275 (1996)

    Article  Google Scholar 

  5. Carter, R.M., Blake II, R.C., Nguyen, T.D., Bostanian, L.A.: Near real-time biosensor-based detection of 2,4-dinitrophenol. Biosens. Bioelectron. 18, 69–72 (2003)

    Article  Google Scholar 

  6. Chin, B., Lesowitz, G.S., Bernstein, I.A.: A cellular model for studying accommodation to environmental stressors: protection and potentiation by cadmium and other metals. Environ. Res. 16, 432–442 (1978)

    Article  Google Scholar 

  7. Harris, M.O., Cocoran, J.J.: Toxicological profile for dinitrophenols. Technical report, Agency for Toxic Substances and Disease, Public Health Service, U.S. Department of Health and Human Services (1995)

    Google Scholar 

  8. Jump, J.A.: Studies on sclerotization in Physarum polycephalum. Am. J. Bot. 41, 561–567 (1954)

    Article  Google Scholar 

  9. Kamiya, N.: Physical and chemical basis of cytoplasmic streaming. Annu. Rev. Plant Physiol. 32, 205–236 (1981)

    Article  Google Scholar 

  10. Kamiya, N., Nakajima, H., Abe, S.: Physiology of the motive force of protoplasmic streaming. Protoplasma 48(1), 94–112 (1957)

    Article  Google Scholar 

  11. Macey, P.: Impedance spectroscopy based interfacing with a living cell for biosensors and bio-coporcessors. Part III Project Report, School of Electronics and Computer Science, University of Southampton (2007)

    Google Scholar 

  12. Mohberg, J.: The use of physarum for testing of toxicity/mutagenicity. Technical Report AFAMRL-TR-84-007, Air Force Aerospace Medical Research Laboratory (1984)

    Google Scholar 

  13. Mulchandani, P., Hangarter, C.M., Lei, Y., Chen, W., Mulchandani, A.: Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens. Bioelectron. 21, 523–527 (2005)

    Google Scholar 

  14. Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82, 23–28 (1999)

    Google Scholar 

  15. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  16. Sauer, H.W.: Developmental Biology of Physarum. Cambridge University Press (1981)

    Google Scholar 

  17. Sørensen, S.J., Burmølle, M., Hansen, L.H.: Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr. Opin. Biotechnol. 17, 11–16 (2006)

    Article  Google Scholar 

  18. Sørensen, S.J., Hansen, L.H.: The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb. Ecol. 42, 483–494 (2001)

    Article  Google Scholar 

  19. Sun, T., Morgan, H.: Impedance measurements of cells. In: Li, D. (ed.) Encyclopedia of Micro- and Nano-fluidics. Springer, Germany (2008)

    Google Scholar 

  20. Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sens. Update 10(1), 33–46 (2002)

    Article  Google Scholar 

  21. Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)

    Article  Google Scholar 

  22. Terayama, K., Honma, H., Kawarabayashi, T.: Toxicity of heavy metals and insecticides on slime mold Physarum plycephalum. J. Toxicol. Sci. 1978, 293–304 (1978)

    Article  Google Scholar 

  23. Ueda, T., Terayama, K., Kurihara, K., Kobatake, Y.: Threshold phenomena in ghemoreception and taxis in slime mold Physarum polycephalum. J. Gen. Physiol. 65, 223–234 (1975)

    Article  Google Scholar 

  24. Wohlfarth-Bottermann, K.E.: Oscillatory contraction activity in physarum. J. Exp. Biol. 81, 15–32 (1979)

    Google Scholar 

  25. Yamada, Y., Inoue, A., Watanabe, S.: 2, 4-Dinitrophenol as a specific inhibitor of the breakdown of the actomyosin-phosphate-ADP complex. J. Biochem. 80(5), 1109–1115 (1976)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jeff Jones and Nurul Yunus for their comments on an earlier version of this paper. This research is supported by the Life Sciences Interfaces Forum, University of Southampton, UK and the Leverhulme Trust funded project “Mould intelligence: biological amorphous robots”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soicdhiro Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsuda, S., Zauner, KP., Morgan, H. (2016). Long-Term Storable Microfluidic Whole-Cell Biosensor Using Physarum polycephalum for Toxicity Prescreening. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics