Skip to main content

Halting Physarum Machines Based on Compressibility

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

  • 1277 Accesses

Abstract

Being a living substrate the slime mould does not halt its behaviour when a task is solved but often continues foraging the space thus masking the solution found. We propose to use temporal changes in compressibility of the slime mould patterns as indicators of the halting of the computation. Compressibility of a pattern characterises the pattern’s morphological diversity, i.e. a number of different local configurations. At the beginning of computation the slime explores the space thus generating less compressible patterns. After gradients of attractants and repellents are detected the slime spans data sites with its protoplasmic network and retracts scouting branches, thus generating more compressible patterns. We analyse the feasibility of the approach on results of laboratory experiments and computer modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboy, M., Hornero, R., Abásolo, D., Álvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans. Biomed. Eng. 53(11), 2282–2288 (2006)

    Article  Google Scholar 

  2. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), 975–980 (2007)

    Article  Google Scholar 

  3. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)

    Google Scholar 

  4. Adamatzky, A.: On diversity of configurations generated by excitable cellular automata with dynamical excitation intervals. Int. J. Mod. Phys. C 23(12) (2012)

    Google Scholar 

  5. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBiosci. 11(2), 131–134 (2012)

    Article  Google Scholar 

  6. Adamatzky, A.: The world’s colonization and trade routes formation as imitated by slime mould. Int. J. Bifurcat. Chaos 22(08) (2012)

    Google Scholar 

  7. Adamatzky, A., Chua, L.O.: Phenomenology of retained refractoriness: on semi-memristive discrete media. Int. J. Bifurcat. Chaos 22(11) (2012)

    Google Scholar 

  8. Adamatzky, A., Martinez, G.J.: On generative morphological diversity of elementary cellular automata. Kybernetes 39(1), 72–82 (2010)

    Google Scholar 

  9. Al-Bahadili, H., Rababa’a, A.: A bit-level text compression scheme based on the HCDC algorithm. Int. J. Comput. Appl. 32(3), 355 (2010)

    Google Scholar 

  10. Amigó, J.M., Szczepański, J., Wajnryb, E., Sanchez-Vives, M.V.: Estimating the entropy rate of spike trains via Lempel-Ziv complexity. Neural Comput. 16(4), 717–736 (2004)

    Google Scholar 

  11. Bhattacharya, J., et al.: Complexity analysis of spontaneous EEG. Acta Neurobiol. Exp. 60(4), 495–502 (2000)

    Google Scholar 

  12. Feldman, D.P., Crutchfield, J.: A Survey of Complexity Measures, vol. 11. Santa Fe Institute, USA (1998)

    Google Scholar 

  13. Jones, J.: Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artif. Life 16(2), 127–153 (2010)

    Article  Google Scholar 

  14. Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. Int. J. Unconventional Comput. 6, 125–144 (2010)

    Google Scholar 

  15. Jones, J.: From Pattern Formation to Material Computation: Multi-agent Modelling of Physarum Polycephalum. Springer, in-press (2015)

    Google Scholar 

  16. Jones, J., Adamatzky, A.: Slime mould inspired generalised Voronoi diagrams with repulsive fields. Int. J. Bifurcat. Chaos (2013) (In-Press)

    Google Scholar 

  17. Khalatur, P.G., Novikov, V.V., Khokhlov, A.R.: Conformation-dependent evolution of copolymer sequences. Phys. Rev. E 67(5):051901 (2003)

    Google Scholar 

  18. Matsumoto, T., Sadakane, K., Imai, H., Okazaki, T.: Can general-purpose compression schemes really compress DNA sequences. Currents Comput. Mol. Biol. 76–77 (2000)

    Google Scholar 

  19. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Math. 233(1), 3–36 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Ninagawa, S.: Solving the parity problem with Rule 60 in array size of the power of two (2013). arXiv:1307.3888

  21. Ninagawa, S., Adamatzky, A.: Classifying elementary cellular automata using compressibility, diversity and sensitivity measures. Int. J. Mod. Phys. C 25(03) (2014)

    Google Scholar 

  22. Ninagawa, S., Martinez, G.J.: Compression-based analysis of cyclic tag system emulated by Rule 110. J. Cell. Automata 9(1):23–35 (2014)

    Google Scholar 

  23. Orlov, Y.L., Potapov, V.N.: Complexity: an internet resource for analysis of DNA sequence complexity. Nucleic Acids Res. 32(suppl 2), W628–W633 (2004)

    Google Scholar 

  24. Preparata, F.P., Shamos, M.L.: Computational Geometry, An introduction. Springer, New York (1985)

    Google Scholar 

  25. Redeker, M., Adamatzky, A., Martínez, G.J.: Expressiveness of elementary cellular automata. Int. J. Mod. Phys. C 24(03) (2013)

    Google Scholar 

  26. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inform. Theory 24(5), 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adamatzky, A., Jones, J. (2016). Halting Physarum Machines Based on Compressibility. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics