Skip to main content

Slime Mould Inspired Applications on Graph-Optimization Problems

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

Since the appearance of slime mould-inspired network design applications, it has attracted the attention of many researchers from all over the world. In this chapter, we provide an overview of a variety of slime mould-inspired applications on graph-optimization problems. We will focus more on the mathematical model inspired by slime mould, develop a novel Energy Propagation model, and also covers its applications to many graph optimization problems. Some examples of such applications include Shortest Path Tree Problem (SPT), Supply Chain Network Design (SCNP), Maze Problem and Multi-source Multi-sink Minimum Cost Flow Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes 37(2), 258–264 (2008)

    Google Scholar 

  2. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)

    Google Scholar 

  3. Adamatzky, A.: Bioevaluation of World Transport Networks. World Scientific (2012)

    Google Scholar 

  4. Adamatzky, A.: The world’s colonization and trade routes formation as imitated by slime mould. Int. J. Bifurcat. Chaos 22(08) (2012)

    Google Scholar 

  5. Adamatzky, A.: Slime mould computes planar shapes. Int. J. Bio-Inspired Comput. 4(3), 149–154 (2012)

    Article  Google Scholar 

  6. Adamatzky, A., Alonso-Sanz, R.: Rebuilding Iberian motorways with slime mould. Biosystems 105(1), 89–100 (2011)

    Article  Google Scholar 

  7. Adamatzky, A., Martínez, G.J., Chapa-Vergara, S.V., Asomoza-Palacio, R., Stephens, C.R.: Approximating Mexican highways with slime mould. Nat. Comput. 10(3), 1195–1214 (2011)

    Article  MathSciNet  Google Scholar 

  8. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  9. Adamatzky, A., Yang, X.-S., Zhao, Y.-X.: Slime mould imitates transport networks in China. Int. J. Intell. Comput. Cybern. 6(3), 232–251 (2013)

    Article  MathSciNet  Google Scholar 

  10. Adamatzky, A.I.: Route 20, autobahn 7, and slime mold: approximating the longest roads in USA and Germany with slime mold on 3-D terrains. IEEE Trans. Cybern. 44(1), 126–136 (2014)

    Article  Google Scholar 

  11. Aono, M., Hara, M., Aihara, K.: Amoeba-based neurocomputing with chaotic dynamics. Commun. ACM 50(9), 69–72 (2007)

    Article  Google Scholar 

  12. Aono, M., Zhu, L., Hara, M.: Amoeba-based neurocomputing for 8-city traveling salesman problem. Int. J. Unconventional Comput. 7(6), 463–480 (2011)

    Google Scholar 

  13. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: an experimental study. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 51–62. Springer, Heidelberg (2009)

    Google Scholar 

  14. Bauer, F., Varma, A.: Distributed algorithms for multicast path setup in data networks. IEEE/ACM Trans. Networking (TON) 4(2), 181–191 (1996)

    Article  Google Scholar 

  15. Baumgarten, W., Ueda, T., Hauser, M.J.: Plasmodial vein networks of the slime mold physarum polycephalum form regular graphs. Phys. Rev. E 82(4), 046113 (2010)

    Article  Google Scholar 

  16. Becker, M.: Design of fault tolerant networks with agent-based simulation of physarum polycephalum. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 285–291. IEEE (2011)

    Google Scholar 

  17. Bell, M.G., Iida, Y.: Transportation Network Analysis (1997)

    Google Scholar 

  18. Bingfeng, S., Ziyou, G.: Modeling Network Flow and System Optimization for Traffic and Transportation System (in Chinese). China Communications Press (2013)

    Google Scholar 

  19. Bi, Z., Zhang, W.: Flexible fixture design and automation: review, issues and future directions. Int. J. Prod. Res. 39(13), 2867–2894 (2001)

    Article  Google Scholar 

  20. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)

    Article  MathSciNet  Google Scholar 

  21. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X.E.A.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)

    Google Scholar 

  22. Chan, E., Yang, Y.: Shortest path tree computation in dynamic graphs. IEEE Trans. Comput. 58(4), 541–557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, H., Tseng, P.: A low complexity shortest path tree restoration scheme for IP networks. IEEE Commun. Lett. 14(6), 566–568 (2010)

    Article  Google Scholar 

  24. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S.: Fuzzy dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 12(3), 1231–1237 (2012)

    Article  Google Scholar 

  25. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)

    Article  MATH  Google Scholar 

  27. Ernst, A.T., Horn, M., Kilby, P., Krishnamoorthy, M.: Dynamic scheduling of recreational rental vehicles with revenue management extensions. J. Oper. Res. Soc. 61(7), 1133–1143 (2010)

    Article  MATH  Google Scholar 

  28. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Incremental algorithms for the single-source shortest path problem. Found. Softw. Technol. Theoret. Comput. Sci. 113–124 (1994)

    Google Scholar 

  29. Gao, C., Lan, X., Zhang, X., Deng, Y.: A bio-inspired methodology of identifying influential nodes in complex networks. PloS ONE 8(6), e66732 (2013)

    Article  Google Scholar 

  30. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Glover, F., Klingman, D.D., Phillips, N.V., Schneider, R.F.: New polynomial shortest path algorithms and their computational attributes. Manage. Sci. 31(9), 1106–1128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  33. Gunji, Y.-P., Shirakawa, T., Niizato, T., Yamachiyo, M., Tani, I.: An adaptive and robust biological network based on the vacant-particle transportation model. J. Theor. Biol. 272(1), 187–200 (2011)

    Article  Google Scholar 

  34. Hale, T.S., Huq, F., Hipkin, I., Tucker, C.: A methodology for estimating expected distances between nodes on a network. J. Oper. Res. Soc. 64(3), 439–445 (2012)

    Article  Google Scholar 

  35. Houbraken, M., Demeyer, S., Staessens, D., Audenaert, P., Colle, D., Pickavet, M.: Fault tolerant network design inspired by physarum polycephalum. Nat. Comput. 12(2), 277–289 (2013)

    Article  MathSciNet  Google Scholar 

  36. Huang, H.-J., Lam, W.H.: Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transp. Res. Part B: Methodol. 36(3), 253–273 (2002)

    Article  Google Scholar 

  37. Huynh, V.-N., Nakamori, Y.: A satisfactory-oriented approach to multiexpert decision-making with linguistic assessments. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(2), 184–196 (2005)

    Article  Google Scholar 

  38. Ito, K., Johansson, A., Nakagaki, T., Tero, A.: Convergence properties for the physarum solver (2011). arXiv:1101.5249

  39. Jones, J., Adamatzky, A.: Material approximation of data smoothing and spline curves inspired by slime mould. Bioinspiration Biomimetics (2014)

    Google Scholar 

  40. Jones, J., Adamatzky, A.: Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 13(1), 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  41. Kasai, S., Aono, M., Naruse, M.: Amoeba-inspired computing architecture implemented using charge dynamics in parallel capacitance network. Appl. Phys. Lett. 103(16), 163703 (2013)

    Article  Google Scholar 

  42. Laporte, G.: A concise guide to the traveling salesman problem. J. Oper. Res. Soc. 61(1), 35–40 (2010)

    Article  MATH  Google Scholar 

  43. Liu, H.X., He, X., He, B.: Method of successive weighted averages (mswa) and self-regulated averaging schemes for solving stochastic user equilibrium problem. Netw. Spat. Econ. 9(4), 485–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, L., Song, Y., Zhang, H., Ma, H., Vasilakos, A.: Physarum optimization: a biology-inspired algorithm for the Steiner tree problem in networks. IEEE Trans. Comput. (2013). doi:10.1109/TC.2013.229

    Google Scholar 

  45. Masi, L., Vasile, M.: A multi-directional modified physarum solver for discrete decision making. In: Bioinspired Optimization Methods and their Applications. BIOMA 2012 (2012)

    Google Scholar 

  46. Masi, L., Vasile, M.: Optimal multi-objective discrete decision making using a multidirectional modified Physarum Solver. In: EVOLVE 2012 International Conference, 2012

    Google Scholar 

  47. Miranda-Moreno, L.F., Nosal, T.: Weather or not to cycle. Transp. Res. Rec.: J. Transp. Res. Board 2247(1), 42–52 (2011)

    Article  Google Scholar 

  48. Misra, S., Oommen, B.J.: Dynamic algorithms for the shortest path routing problem: learning automata-based solutions. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 35(6), 1179–1192 (2005)

    Article  Google Scholar 

  49. Miyaji, T., Ohnishi, I.: Physarum can solve the shortest path problem on riemannian surface mathematically rigorously. Int. J. Pure Appl. Math. 47(3), 353–369 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Murthy, I., Sarkar, S.: Stochastic shortest path problems with piecewise-linear concave utility functions. Manage. Sci. 44(11-Part-2), S125–S136 (1998)

    Google Scholar 

  51. Nagurney, A.: Supply chain network economics: dynamics of prices, flows and profits. Edward Elgar Publishing (2006)

    Google Scholar 

  52. Nagurney, A.: A system-optimization perspective for supply chain network integration: the horizontal merger case. Transp. Res. Part E: Logistics Transp. Rev. 45(1), 1–15 (2009)

    Article  Google Scholar 

  53. Nagurney, A., Nagurney, L.S.: Sustainable supply chain network design: a multicriteria perspective. Int. J. Sustain. Eng. 3(3), 189–197 (2010)

    Article  MATH  Google Scholar 

  54. Nagurney, A., Woolley, T.: Environmental and cost synergy in supply chain network integration in mergers and acquisitions. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 57–78. Springer, 2010

    Google Scholar 

  55. Nagurney, A., Dong, J., Zhang, D.: A supply chain network equilibrium model. Transp. Res. Part E: Logistics Transp. Rev. 38(5), 281–303 (2002)

    Article  Google Scholar 

  56. Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470–470 (2000)

    Article  Google Scholar 

  57. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1), 47–52 (2001)

    Article  Google Scholar 

  58. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99(6), 68104 (2007)

    Article  Google Scholar 

  59. Narváez, P., Siu, K., Tzeng, H.: New dynamic SPT algorithm based on a ball-and-string model. IEEE/ACM Trans. Networking 9(6), 706–718 (2001)

    Article  Google Scholar 

  60. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  61. Nguyen, S., Pallottino, S., Scutella, M.G.: A new dual algorithm for shortest path reoptimization. Transportation and Network Analysis: Current Trends: Miscellanea in honor ofMichael Florian, vol. 63, 221 (2002)

    Google Scholar 

  62. Perlman, R.: A comparison between two routing protocols: OSPF and IS-IS. IEEE Netw. 5(5), 18–24 (1991)

    Article  Google Scholar 

  63. R language. (2013). http://igraph.sourceforge.net/doc/R/erdos.renyi.game.html

  64. Rescigno, A.: Optimally balanced spanning tree of the star network. IEEE Trans. Comput. 50(1), 88–91 (2001)

    Article  MathSciNet  Google Scholar 

  65. Royset, J.O., Carlyle, W.M., Wood, R.K.: Routing military aircraft with a constrained shortest-path algorithm. Mil. Oper. Res. 14(3), 31–52 (2009)

    Article  Google Scholar 

  66. Sharma, N., Arkatkar, S.S., Sarkar, A.K.: Study on heterogeneous traffic flow characteristics of a two-lane road. Transport 26(2), 185–196 (2011)

    Article  Google Scholar 

  67. Shirakawa, T., Adamatzky, A., Gunji, Y.-P., Miyake, Y.: On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int. J. Bifurcat. Chaos 19(09), 3109–3117 (2009)

    Article  Google Scholar 

  68. Stephenson, S.L., Stempen, H., Hall, I.: Myxomycetes: A Handbook of Slime Molds. Timber Press Portland, Oregon (1994)

    Google Scholar 

  69. Taleizadeh, A.A., Niaki, S.T.A., Wee, H.-M.: Joint single vendor-single buyer supply chain problem with stochastic demand and fuzzy lead-time. Knowl.-Based Syst. 48, 1–9 (2013)

    Article  Google Scholar 

  70. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: a biologically inspired method of road-network navigation. Phys. A 363(1), 115–119 (2006)

    Article  Google Scholar 

  71. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244(4), 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  72. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tsompanas, M., Sirakoulis, G., Adamatzky, A.: Evolving transport networks with cellular automata models inspired by slime mould. IEEE Trans. Cybern. (2013)

    Google Scholar 

  74. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent physarum logical-computing. Biosystems 73(1), 45–55 (2004)

    Article  Google Scholar 

  75. Verter, V., Kara, B.Y.: A path-based approach for hazmat transport network design. Manage. Sci. 54(1), 29–40 (2008)

    Article  Google Scholar 

  76. Warburton, A.: Approximation of pareto optima in multiple-objective, shortest-path problems. Oper. Res. 35(1), 70–79 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  77. Watanabe, S., Tero, A., Takamatsu, A., Nakagaki, T.: Traffic optimization in railroad networks using an algorithm mimicking an amoeba-like organism, Physarum plasmodium. BioSystems 105(3), 225–232 (2011)

    Article  Google Scholar 

  78. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  79. Whiting, J.G., de Lacy Costello, B.P., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Google Scholar 

  80. Willms, A.R., Yang, S.X.: An efficient dynamic system for real-time robot-path planning. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 36(4), 755–766 (2006)

    Article  Google Scholar 

  81. Wu, K., Nagurney, A., Liu, Z., Stranlund, J.K.: Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: A transportation network equilibrium transformation. Transp. Res. Part D: Transp. Environ. 11(3), 171–190 (2006)

    Article  Google Scholar 

  82. Xiao, T., Yu, G., Sheng, Z., Xia, Y.: Coordination of a supply chain with one-manufacturer and two-retailers under demand promotion and disruption management decisions. Ann. Oper. Res. 135(1), 87–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. Xu, Y., Qu, R.: Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods. J. Oper. Res. Soc. 62(2), 313–325 (2011)

    Article  Google Scholar 

  84. Zachary, W.: An information flow modelfor conflict and fission in small groups1. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  85. Zhang, X., Liu, Q., Hu, Y., Chan, F.T., Mahadevan, S., Zhang, Z., Deng, Y.: An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs (2013). arXiv:1311.0460

  86. Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., Deng, Y.: Solving 0–1 knapsack problems based on amoeboid organism algorithm. Appl. Math. Comput. 219(19), 9959–9970 (2013)

    MathSciNet  MATH  Google Scholar 

  87. Zhang, X., Zhang, Y., Zhang, Z., Mahadevan, S., Adamatzky, A., Deng, Y.: Rapid Physarum algorithm for shortest path problem. Appl. Soft Comput. 23, 19–26 (2014)

    Article  Google Scholar 

  88. Zhang, X., Adamataky, A., Yang, H., Mahadevan, S., Yang, X.-S., Wang, Q., Deng, Y.: A bio-inspired algorithm for identification of critical components in the transportation networks. Appl. Math. Comput. (2014). doi:http://dx.doi.org/10.1016/j.amc.2014.09.055

    Google Scholar 

  89. Zhang, X., Adamatzky, A., Yang, X.-S., Yang, H., Mahadevan, S., Deng, Y.: A Physarum-inspired approach to optimal supply chain network design at minimum total cost with demand satisfaction (2014). arXiv:1403.5345

  90. Zhao, M., Yang, Y.: Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Trans. Comput. 61(2), 265–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  91. Ziyou, G., Yifan, S.: A reserve capacity model of optimal signal control with user-equilibrium route choice. Transp. Res. Part B: Methodol. 36(4), 313–323 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The work is partially supported by National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA013801), National Natural Science Foundation of China (Grant No. 61174022), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20131102130002), R&D Program of China (2012BAH07B01, the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Bei hang University (Grant No. BUAA-VR-14KF-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoge Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Gao, C., Deng, Y., Zhang, Z. (2016). Slime Mould Inspired Applications on Graph-Optimization Problems. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics