Skip to main content

Physarum and Electronics

  • Chapter
  • First Online:

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

We report the progress of using the plasmodium of Physarum as a biological electronic component. We provide blue prints of experimental prototypes of Physarum wires and analyse their transfer function, discuss how lifespan of a Physarum can be increased. We overview our experimental laboratory results on using Physarum wires with buffers and evaluate a potential of Physarum wires to transmit digital and analogue data. We argue that the Physarum wires could be used as alternative electronic components for future bio-electric hybrid computers and electronic devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific Publishing Co., Pte. Ltd., London (2010)

    Google Scholar 

  2. Adamatzky, A.: The world’s colonization and trade routes formation as imitated by slime mould. Int. J. Bifurcat. Chaos 22(08), 1230028 (2012)

    Article  Google Scholar 

  3. Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)

    Article  Google Scholar 

  4. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators B Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  5. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3147–3500 (2013)

    Article  Google Scholar 

  6. Adamatzky, A.: Slime mould electronic oscillators. Microelectron. Eng. 124, 58–65 (2014)

    Article  Google Scholar 

  7. Adamatzky, A.: Tactile bristle sensors made with slime mold. IEEE Sens. J. 14(2), 324–332 (2014)

    Article  Google Scholar 

  8. Adamatzky, A.: Towards plant wires. Biosystems 122, 1–6 (2014)

    Article  Google Scholar 

  9. Adamatzky, A., et al.: Route 20, autobahn 7, and slime mold: approximating the longest roads in USA and Germany with slime mold on 3-D terrains. IEEE Trans. Cybern. 44(1), 126–136 (2014)

    Article  Google Scholar 

  10. Adamatzky, A., Jones, J.: Road planning with slime mould: if Physarum built motorways it would route M6/M74 through newcastle. Int. J. Bifurcat. Chaos 20(10), 3065–3084 (2010)

    Article  MathSciNet  Google Scholar 

  11. Daniel, J.W., Rusch, H.P.: Method for inducing sporulation of pure cultures of the myxomycete Physarum polycephalum. J. Bacteriol. 83, 234–240 (1962)

    Google Scholar 

  12. de Lacy Costello, B.P.J., Adamatzky, A.: Routing of Physarum polycephalum signals using simple chemicals. Commun. Integr. Biol. 7(3), e28543–1 -10 (2013)

    Google Scholar 

  13. Deutscher, L., Renner, L.D., Cuniberti, G.: Flagella—templates for the synthesis of metallic nanowires. In: Romero, L.M.R. (ed.) XIII Mediterranean Conference on Medical and Biological Engineering and Computing. IFMBE Proceedings, vol. 41, pp. 860–863. Springer International Publishing (2013)

    Google Scholar 

  14. Dimonte, A., Berzina, T., Cifarelli, A., Chiesi, V., Albertini, F., Erokhin, V.: Conductivity patterning with Physarum polycephalum: natural growth and deflecting. Phys. Status Solidi (C) 5, n/a–n/a (2014)

    Google Scholar 

  15. Ito, Y., Fukusaki, E.: DNA as a nanomaterial. J. Mol. Catal. B Enzym. 28(4–6), 155–166 (2004)

    Article  Google Scholar 

  16. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum. J. Gen. Physiol. 41(6), 1205–1222 (1958)

    Article  Google Scholar 

  17. Lovley, D.R.: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 4(12), 4896 (2011)

    Article  Google Scholar 

  18. Magoga, M., Joachim, C.: Conductance and transparence of long molecular wires. Phys. Rev. B 56(8), 4722–4729 (1997)

    Article  Google Scholar 

  19. Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.-C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T., Lovley, D.R.: Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6(9), 573–579 (2011)

    Google Scholar 

  20. Mayne, R., Adamatzky, A.: Toward hybrid nanostructure-slime mould devices. Nano LIFE 4, 1450007 (2014)

    Google Scholar 

  21. Mayne, R., Patton, D., De Lacy Costello, B., Adamatzky, A., Camilla Patton, R.: On the internalisation, intraplasmodial carriage and excretion of metallic nanoparticles in the slime mould, Physarum polycephalum. Int. J. Nanotechnol. Mol. Comput. 3(3), 1–14 (2013)

    Article  Google Scholar 

  22. Nakagaki, T., Yamada, H., Tóth, A.: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Google Scholar 

  23. Palchetti, I., Mascini, M.: Biosensor technology: a brief history. In: Sensors and Microsystems, pp. 15–23. Springer (2010)

    Google Scholar 

  24. Palleau, E., Reece, S., Desai, S.C., Smith, M.E., Dickey, M.D.: Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. (Deerfield Beach, Fla.) 25(11), 1589–1592 (2013)

    Google Scholar 

  25. Pomfret, R., Sillay, K., Miranpuri, G.: Investigation of the electrical properties of agarose gel: characterization of concentration using nyquist plot phase angle and the implications of a more comprehensive in vitro model of the brain 20(3), 99–107 (2013)

    Google Scholar 

  26. Ratner, M.A., Davis, B., Kemp, M., Mujica, V.: Molecular wires: charge transport, mechanisms, and control. Ann. N. Y. Acad. Sci. 852, 22–37 (1998)

    Google Scholar 

  27. Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L., Lovley, D.R.: Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72(11), 7345–7348 (2006)

    Google Scholar 

  28. Reid, C.R., Latty, T., Dussutour, A., Beekman, M.: Slime mold uses an externalized spatial “memory” to navigate in complex environments. Proc. Nat. Acad. Sci. U.S.A. 109(43), 17490–17494 (2012)

    Google Scholar 

  29. Renaud, S., Catargi, B., Lang, J.: Biosensors in Diabetes. IEEE Pulse (2014)

    Google Scholar 

  30. Smith, D.A., Saldana, R.: Model of the Ca2+ oscillator for shuttle streaming in Physarum polycephalum. Biophys. J. 61(2), 368–380 (1992)

    Article  Google Scholar 

  31. Smith, D., Ryan, M.: Implementing best practices and validation of cryopreservation techniques for microorganisms. Sci. World J. 2012, 805659 (2012)

    Article  Google Scholar 

  32. Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J.I., Kubiak, C.P.: Conductance spectra of molecular wires. J. Chem. Phys. 109(7), 2874–2882 (1998)

    Article  Google Scholar 

  33. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Transfer function of protoplasmic tubes of Physarum polycephalum. Biosystems 128, 48–51 (2015)

    Article  Google Scholar 

  34. Whiting, J.G.H., Mayne, R., Moody, N., de Lacy Costello, B., Adamatzky, A.: Practical circuits with Physarum wires. In Preparation (2015)

    Google Scholar 

  35. Whiting, J.G.H., de Lacy Costello, B., Adamatzky, A.: Development and initial testing of a novel slime mould biosensor. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4042–4045 (2014)

    Google Scholar 

  36. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Physarum chip: developments in growing computers from slime mould. In: UCNC: Unconventional Computation in Europe Workshop, p. 3 (2014)

    Google Scholar 

  37. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. Biosystems 119, 45–52 (2014)

    Article  Google Scholar 

  38. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Article  Google Scholar 

  39. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Article  Google Scholar 

  40. Williams, K.A., Boydston, A.J., Bielawski, C.W.: Towards electrically conductive, self-healing materials. J. R. Soc., Interface/R. Soc. 4(13), 359–362 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. H. Whiting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Whiting, J.G.H., Adamatzky, A. (2016). Physarum and Electronics. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics