Skip to main content

Delay Effects on the Dynamics of the Lengyel–Epstein Reaction-Diffusion Model

  • Chapter
  • First Online:
Mathematical Modeling and Applications in Nonlinear Dynamics

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 14))

Abstract

We investigate bifurcations of the Lengyel–Epstein reaction-diffusion model involving time delay under the Neumann boundary conditions. We first give stability and Hopf bifurcation analysis of the ordinary differential equation (ODE) models, including delay associated with this model. Later, we extend this analysis to the partial differential equation (PDE) model. We determine conditions on parameters of both models to have Hopf bifurcations. Bifurcation analysis for both models show that Hopf bifurcations occur by regarding the delay parameter as a bifurcation parameter. Using the normal form theory and the center manifold reduction for partial functional differential equations, we also determine the direction of the Hopf bifurcations and the stability of bifurcating periodic solutions for the PDE model. Finally, we perform some numerical simulations to support analytical results obtained for the ODE models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkocaoğlu, H., Merdan, H., Çelik., C.: Hopf bifurcation analysis of a general non-linear differential equation with delay. J. Comput. Appl. Math. 237, 565–575 (2013)

    Google Scholar 

  2. Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson-Prentice Hall, Upper Saddle River, NJ (2007)

    Google Scholar 

  3. Andronov, A.A., Witt, A.: Sur la theórie mathematiques des autooscillations. C. R. Acad. Sci. Paris 190, 256–258 (1930) [French]

    Google Scholar 

  4. Balachandran, B., Kalmar-Nagy, T., Gilsinn, D.E.: Delay Differential Equations: Recent Advances and New Directions. Springer, New York (2009)

    Google Scholar 

  5. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  6. Chafee, N.: A bifurcation problem for functional differential equation of finitely retarded type. J. Math. Anal. Appl. 35, 312–348 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooke, K.L., Driessche, P.: On zeroes of some transcendental equations. Funkcialaj Ekvacioj 29, 77–90 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Çelik, C., Merdan, H.: Hopf bifurcation analysis of a system of coupled delayed-differential equations. Appl. Math. Comput. 219(12), 6605–6617 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Kepper, P., Castets, V., Dulos, E., Boissonade, J.: Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Phys. D 49, 161–169 (1991)

    Article  Google Scholar 

  11. Du, L., Wang, M.: Hopf bifurcation analysis in the 1-D Lengyel–Epstein reaction-diffusion model. J. Math. Anal. Appl. 366, 473–485 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  13. Hale, J.K.: Theory of Functional Differential Equations. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  14. Hale, J.K., Kogak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  15. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  16. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines differential systems. Ber. d. Sachs. Akad. d. Wiss. (Math.-Phys. Kl). Leipzig 94, 1–22 (1942) [German]

    Google Scholar 

  17. Jang, J., Ni, W.M., Tang, M.: Global bifurcation and structure of Turing patterns in 1-D Lengyel–Epstein model. J. Dyn. Diff. Equ. 16, 297–320 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin, J., Shi, J., Wei, J., Yi, F.: Bifurcations of patterned solutions in diffusive Lengyel–Epstein system of CIMA chemical reaction. Rocky Mountain J. Math. 43(5), 1637–1674 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karaoglu, E., Merdan, H.: Hopf bifurcation analysis for a ratio-dependent predator-prey system involving two delays. ANZIAM J. 55, 214–231 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karaoglu, E., Merdan, H.: Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays. Chaos Soliton Fractals 68, 159–168 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kuang, Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, New York (1993)

    Google Scholar 

  22. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  23. Lengyel, I., Epstein, I.R.: Modeling of Turing structure in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650–652 (1991)

    Article  Google Scholar 

  24. Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction-diffusion system. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)

    Article  MATH  Google Scholar 

  25. Li, B., Wang, M.: Diffusion-driven instability and Hopf bifurcation in Brusselator system. Appl. Math. Mech. (English Ed.) 29, 825–832 (2008)

    Google Scholar 

  26. Ma, Z.P.: Stability and Hopf bifurcation for a three-component reaction-diffusion population model with delay effect. Appl. Math. Model. 37(8), 5984–6007 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mao, X.-C., Hu, H.-Y.: Hopf bifurcation analysis of a four-neuron network with multiple time delays. Nonliear Dyn. 55(1–2), 95–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    Book  MATH  Google Scholar 

  29. Merdan, H., Kayan, Ş.: Hopf bifurcations in Lengyel-Epstein reaction-diffusion model with discrete time delay. Nonlinear Dyn. 79, 1757–1770 (2015)

    Article  MathSciNet  Google Scholar 

  30. Murray, J.D.: Mathematical Biology. Springer, New York, (2002)

    MATH  Google Scholar 

  31. Ni, W., Tang, M.: Turing patterns in the Lengyel–Epstein system for the CIMA reaction. Trans. Am. Math. Soc. 357, 3953–3969 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rovinsky, A., Menzinger, M.: Interaction of Turing and Hopf bifurcations in chemical systems. Phys. Rev. A 46(10), 6315–6322 (1998)

    Article  MathSciNet  Google Scholar 

  33. Ruan, S.: Diffusion-driven instability in the Gierer–Meinhardt model of morphogenesis. Nat. Resour. Model. 11, 131–132 (1998)

    Google Scholar 

  34. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. A Ser. B 237, 37–72 (1952)

    Article  Google Scholar 

  35. Wu, J.: Theory and Applications of Partial Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  36. Xu, C., Shao, Y.: Bifurcations in a predator-prey model with discrete and distributed time delay. Nonliear Dyn. 67(3), 2207–2223 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yafia, R.: Hopf bifurcation in differential equations with delay for tumor-immune system competition model. SIAM J. Appl. Math. 67(6), 1693–1703 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9(3), 1038–1051 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yi, F., Wei, J., Shi, J.: Global asymptotical behavior of the Lengyel–Epstein reaction-diffusion system. Appl. Math. Lett. 22(1), 52–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zang, G., Shen, Y., Chen, B.: Hopf bifurcation of a predator-prey system with predator harvesting and two delays. Nonliear Dyn. 73(4), 2119–2131 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Merdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merdan, H., Kayan, Ş. (2016). Delay Effects on the Dynamics of the Lengyel–Epstein Reaction-Diffusion Model. In: Luo, A., Merdan, H. (eds) Mathematical Modeling and Applications in Nonlinear Dynamics. Nonlinear Systems and Complexity, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-26630-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26630-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26628-2

  • Online ISBN: 978-3-319-26630-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics