Skip to main content

Searching for (near) Optimal Codes

  • Conference paper
  • First Online:
  • 1009 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

Abstract

Formally self-dual (FSD) codes are interesting codes and have received an enormous research effort due to their importance in mathematics and computer science. Danielsen and Parker proved that every self-dual additive code over GF(4) is equivalent to a graph codes in 2006, and hence graph is an important tool for searching (near) optimal codes. In this paper, we introduce a new method of searching (near) optimal binary (formally self-dual) linear codes and additive codes from circulant graphs.

Supported by “973” program No. 2013CB834204.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Betsumiya, K., Harada, M.: Binary optimal odd formally self-dual codes. Des. Codes Cryptogr. 23, 11–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betsumiya, K., Harada, M.: Classification of formally self-dual even codes of lengths up to 16. Des. Codes Cryptogr. 23, 325–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bermond, J.C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a survey. J. Parallel Distribut. Comput. 24, 2–10 (1995)

    Article  Google Scholar 

  4. Boesch, F.T., Wang, J.F.: Reliable circulant networks with minimum transmission delay. IEEE Trans. Circuits Syst. 32, 1286–1291 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, London (2008)

    MATH  Google Scholar 

  6. Danielsen, L.E.: On Self-Dual Quantum Codes, Graphs and Boolean Functions. University of Bergen, Norway (2005)

    Google Scholar 

  7. Danielsen, L.E.: Graph-based classification of self-dual additive codes over finite field. Adv. Math. Commun. 3(4), 329–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Danielsen, L.E.: On the classification of Hermitian self-dual additive codes over GF(9). IEEE Trans. Inform. Theory 58(8), 5500–5511 (2012)

    Article  MathSciNet  Google Scholar 

  9. Danielsen, L.E., Parker, M.G.: Directed graph representation of half-rate additive codes over GF(4). Des. Codes Cryptogr. 59, 119–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danielsen, L.E., Parker, M.G.: On the classification of all self-dual additive codes over \(GF(4)\) of length up to \(12\). J. Combin. Theory Series 113, 1351–1367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Glynn, D.G., Gulliver, T.A., Marks, J.G., Gupta, M.K.: The Geometry of Additive Quantum Codes, Preface. Springer, Berlin (2006)

    Google Scholar 

  12. Grassl, M.: Bounds on the minimum distance of linear codes. http://www.codetables.de. Accessed 31 October 2013

  13. Gulliver, T.A., Östergård, P.R.J.: Binary optimal linear rate \(1/2\) codesraphs. Discrete Math. 283, 255–261 (2004)

    Article  MathSciNet  Google Scholar 

  14. Han, S., Lee, H., Lee, Y.: Binary formally self-dual odd codes. Des. Codes Cryptogr. 61, 141–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University, Cambridge (2003)

    Book  MATH  Google Scholar 

  16. Mans, B., Pappalardi, F., Shparlinski, I.: On the spectral Adam property for circulant graphs. Discrete Math. 254(1–3), 309–329 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monakhova, E.A.: A survey on undirected circulant graphs. Discrete Math. Algor. Appl. 4(1), 1250002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muzychuk, M.E., Tinhofer, G.: Recognizing circulant graphs of prime order in polynomial time. Electron. J. Combin. 5(1), 501–528 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Stein, W.A., et al.: Sage Mathematics Software (Version 6.1.1), The Sage Development Team (2014). http://www.sagemath.org

  20. Tonchev, V.: Error-correcting codes from graphs. Discrete Math. 257, 549–557 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Varbanov, Z.: Additive circulant graph codes over GF(4). Math. Maced. 6, 73–79 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, X., Mao, Y., Wei, M., Li, R. (2015). Searching for (near) Optimal Codes. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics