Skip to main content

A Fast and Effective Heuristic for Discovering Small Target Sets in Social Networks

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9486))

Abstract

Given a network represented by a graph \(G=(V,E)\), we consider a dynamical process of influence diffusion in G that evolves as follows: Initially only the nodes of a given \(S\subseteq V\) are influenced; subsequently, at each round, the set of influenced nodes is augmented by all the nodes in the network that have a sufficiently large number of already influenced neighbors. The question is to determine a small subset of nodes S (a target set) that can influence the whole network. This is a widely studied problem that abstracts many phenomena in the social, economic, biological, and physical sciences. It is known [6] that the above optimization problem is hard to approximate within a factor of \(2^{\log ^{1-\epsilon }|V|}\), for any \(\epsilon >0\). In this paper, we present a fast and surprisingly simple algorithm that exhibits the following features: (1) when applied to trees, cycles, or complete graphs, it always produces an optimal solution (i.e., a minimum size target set); (2) when applied to arbitrary networks, it always produces a solution of cardinality matching the upper bound given in [1], and proved therein by means of the probabilistic method; (3) when applied to real-life networks, it always produces solutions that substantially outperform the ones obtained by previously published algorithms (for which no proof of optimality or performance guarantee is known in any class of graphs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    and politicians too [4, 24, 29, 31].

  2. 2.

    In the rest of the paper we will omit the subscript G whenever the graph G is clear from the context.

References

  1. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411, 4017–4022 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 543–554. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8, 87–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489, 295–298 (2012)

    Article  Google Scholar 

  5. Centeno, C.C., et al.: Irreversible conversion of graphs. Theor. Comput. Sci. 412(29), 3693–3700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23, 1400–1415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Lakshmanan, L.V.S., Castillo, C.: Information and Influence Propagation in Social Networks. Morgan & Claypool, San Francisco (2013)

    Google Scholar 

  8. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. In: Even, G., Rawitz, D. (eds.) MedAlg 2012. LNCS, vol. 7659, pp. 120–133. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target set selection problem for honeycomb networks. SIAM J. Discrete Math. 27(1), 310–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the target set selection problem. J. Comb. Opt. 25(4), 702–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christakis, N.A., Fowler, J.H.: Connected: The surprising Power of our Social Networks and how they Shape our Lives. Little, Brown (2011)

    Google Scholar 

  12. Cicalese, F., Cordasco, G., Gargano, L., Milanic, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theoret. Comput. Sci. 535, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J.G., Vaccaro, U.: Spread of influence in weighted networks under time and budget constraints. Theor. Comput. Sci. 586, 40–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of SODA 2015, pp. 1953–1987 (2015)

    Google Scholar 

  15. Demaine, E.D., et al.: How to influence people with partial incentives. In: Proceedings of WWW 2014, pp. 937–948 (2014)

    Google Scholar 

  16. Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing for time-critical campaigns in large-scale social networks. IEEE/ACM ToN 22(6), 2001–2011 (2014)

    Article  Google Scholar 

  17. Domingos, P., Richardson, M.: Mining the network value of customers. In: ACM International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)

    Google Scholar 

  18. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  19. Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social networks under time window constraints. Theor. Comput. Sci. 584, 53–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978)

    Article  Google Scholar 

  21. Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD, pp. 137–146 (2003)

    Google Scholar 

  22. Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Lately, D.: An army of eyeballs: the rise of the advertisee. The Baffler, 12 Septmeber 2014

    Google Scholar 

  24. Leppaniemi, M., et al.: Targeting young voters in apolitical campaign: empirical insights into an interactive digitalmarketing campaign in the 2007 Finnish general election. J. Nonprofit Public Sect. Mark. 22, 14–37 (2010)

    Article  Google Scholar 

  25. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining library in C++ (2014). http://snap.stanford.edu/snap

  26. Leskovic, H., Adamic, L.A., Huberman, B.A.: The dynamic of viral marketing. J. ACM Trans. Web (TWEB) 1(1), 1–39 (2007). Article No 5

    Article  Google Scholar 

  27. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3, 233–256 (2012)

    Article  MATH  Google Scholar 

  28. Reddy, T.V.T., Rangan, C.P.: Variants of spreading messages. J. Graph Algorithms Appl. 15(5), 683–699 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rival, J.-B., Walach, J.: The use of viral marketing in politics: a case study of the 2007 French presidential election. Master Thesis, Jönköping University

    Google Scholar 

  30. Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under the tipping model. Soc. Netw. Anal. Min. 3, 1225–1248 (2013)

    Article  Google Scholar 

  31. Tumulty, K.: Obama’s viral marketing campaign. TIME Mag. (2007). http://content.time.com/time/magazine/article/0,9171,1640402,00.html

  32. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  33. Zafarani, R., Liu, H.: Social Computing Data Repository at ASU (2009). http://socialcomputing.asu.edu

  34. Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete Math. 312(6), 1136–1143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, H., Mishra, S., Thai, M.T.: Recent advances in information diffusion and influence maximization of complex social networks. In: Wu, J., Wang, Y. (eds.) Opportunistic Mobile Social Networks. CRC Press, Taylor & Francis Group (2014, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Vaccaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U. (2015). A Fast and Effective Heuristic for Discovering Small Target Sets in Social Networks. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, DZ. (eds) Combinatorial Optimization and Applications. Lecture Notes in Computer Science(), vol 9486. Springer, Cham. https://doi.org/10.1007/978-3-319-26626-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26626-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26625-1

  • Online ISBN: 978-3-319-26626-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics