Skip to main content

Macular Dystrophies: Management and Interventions

  • Chapter
  • First Online:
Macular Dystrophies

Abstract

Inherited macular dystrophies comprise a highly heterogeneous group of diseases characterized by irreversible loss of central vision as a result of atrophy of the macula and underlying retinal pigment epithelium. Despite significant progress in understanding molecular bases of these diseases, there are still no preventive or curative treatments. This chapter discusses vision restoration strategies and focuses on innovative therapies for inherited macular diseases that are currently under development and evaluation, e.g., gene therapy, retinal prosthesis, and optogenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The National Eye Institute. Vision research: needs, gaps, and opportunities. https://nei.nih.gov/strategicplanning. Accessed 18 Aug 2015.

  2. Young RW. Solar radiation and age-related macular degeneration. Surv Ophthalmol. 1988;32(4):252–69.

    Article  CAS  PubMed  Google Scholar 

  3. Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Vienot F, et al. Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS ONE. 2013;8(8), e71398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye (Lond). 2005;19(9):935–44.

    Article  CAS  Google Scholar 

  5. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–36.

    Article  PubMed Central  Google Scholar 

  6. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA. 2013;309(19):2005–15.

    Article  Google Scholar 

  7. Sahel JA, Roska B. Gene therapy for blindness. Annu Rev Neurosci. 2013;36:467–88.

    Article  CAS  PubMed  Google Scholar 

  8. Colella P, Auricchio A. AAV-mediated gene supply for treatment of degenerative and neovascular retinal diseases. Curr Gene Ther. 2010;10(5):371–80.

    Article  CAS  PubMed  Google Scholar 

  9. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5(189):189ra76.

    Article  PubMed  Google Scholar 

  10. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28(1):92–5.

    CAS  PubMed  Google Scholar 

  11. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12(6):1072–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Asai-Coakwell M, March L, Dai XH, Duval M, Lopez I, French CR, et al. Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. Hum Mol Genet. 2013;22(7):1432–42.

    Article  CAS  PubMed  Google Scholar 

  13. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cideciyan AV, Jacobson SG, Beltran WA, Sumaroka A, Swider M, Iwabe S, et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A. 2013;110(6):E517–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, Heon E, Hauswirth WW. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015;372(20):1920–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.

    Article  Google Scholar 

  20. Boye SE, Boye SL, Pang J, Ryals R, Everhart D, Umino Y, et al. Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase-1 (GC1) knockout mouse. PLoS ONE. 2010;5(6), e11306.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA, Bainbridge JW, et al. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther. 2011;22(10):1179–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Boye SL, Peshenko IV, Huang WC, Min SH, McDoom I, Kay CN, et al. AAV-mediated gene therapy in the guanylate cyclase (RetGC1/RetGC2) double knockout mouse model of Leber congenital amaurosis. Hum Gene Ther. 2013;24(2):189–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet. 2006;79(3):556–61.

    Article  Google Scholar 

  24. Perrault I, Delphin N, Hanein S, Gerber S, Dufier JL, Roche O, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat. 2007;28(4):416.

    Article  PubMed  Google Scholar 

  25. Burnight ER, Wiley LA, Drack AV, Braun TA, Anfinson KR, Kaalberg EE, et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther. 2014;21(7):662–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Koenekoop RK, Sui R, Sallum J, van den Born LI, Ajlan R, Khan A, et al. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet. 2014;384(9953):1513–20.

    Article  CAS  PubMed  Google Scholar 

  27. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236–46.

    Article  CAS  PubMed  Google Scholar 

  28. Molday LL, Rabin AR, Molday RS. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet. 2000;25(3):257–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15(19):1311–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci. 2013;54(6):4061–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Oxford Biomedica. Oxford BioMedica Announces Positive DSMB Review of Ongoing RetinoStat® and StarGen™ Clinical Studies. www.oxfordbiomedica.co.uk/press-releases/oxford-biomedica-announces-positive-dsmb-review-of-ongoing-retinostat-r-and-stargen-clinical-studies/. Accessed 12 Aug 2015.

  32. Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest. 2012;122(9):3221–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Julien S, Schraermeyer U. Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol Aging. 2012;33(10):2390–7.

    Article  CAS  PubMed  Google Scholar 

  34. Roy D, Pathak DN, Singh R. Effect of centrophenoxine on the antioxidative enzymes in various regions of the aging rat brain. Exp Gerontol. 1983;18(3):185–97.

    Article  CAS  PubMed  Google Scholar 

  35. Amenta F, Ferrante F, Lucreziotti R, Ricci A, Ramacci MT. Reduced lipofuscin accumulation in senescent rat brain by long-term acetyl-L-carnitine treatment. Arch Gerontol Geriatr. 1989;9(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  36. Pescosolido N, Imperatrice B, Karavitis P. The aging eye and the role of L-carnitine and its derivatives. Drugs R D. 2008;9 Suppl 1:3–14.

    Article  CAS  PubMed  Google Scholar 

  37. Feher J, Kovacs B, Kovacs I, Schveoller M, Papale A, Balacco GC. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10. Ophthalmologica. 2005;219(3):154–66.

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Palczewska G, Mustafi D, Golczak M, Dong Z, Sawada O, et al. Systems pharmacology identifies drug targets for Stargardt disease-associated retinal degeneration. J Clin Invest. 2013;123(12):5119–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Meunier I, Senechal A, Dhaenens CM, Arndt C, Puech B, Defoort-Dhellemmes S, et al. Systematic screening of BEST1 and PRPH2 in juvenile and adult vitelliform macular dystrophies: a rationale for molecular analysis. Ophthalmology. 2011;118(6):1130–6.

    Article  PubMed  Google Scholar 

  40. Pasquay C, Wang LF, Lorenz B, Preising MN. Bestrophin 1 – phenotypes and functional aspects in bestrophinopathies. Ophthalmic Genet. 2015;36(3):193–212.

    Article  PubMed  Google Scholar 

  41. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet. 1998;7(9):1517–25.

    Article  CAS  PubMed  Google Scholar 

  42. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, Sandgren O, Forsman K, Holmgren G, Andreasson S, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998;19(3):241–7.

    Article  CAS  PubMed  Google Scholar 

  43. MacDonald IM, Lee T. Best vitelliform macular dystrophy. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al. GeneReviews [Internet]. Seattle: University of Washington, Seattle; 1993–2015. 30 Sep 2003 [updated 12 Dec 2013]. Available from http://www.ncbi.nlm.nih.gov/books/NBK1167/. Accessed 14 Aug 2015.

  44. Guziewicz KE, Komaromy AM, Iwabe S, Cideciyan AV, Dutrow EV, Zangerl B, et al. Sustained therapeutic reversal of canine bestrophinopathy with gene therapy using recombinant AAV2 (abstract). Invest Opthalmol Vis Sci. 2013;54(15):5965.

    Google Scholar 

  45. Mimoun G, Caillaux V, Querques G, Rothschild PR, Puche N, Souied EH. Ranibizumab for choroidal neovascularization associated with adult-onset foveomacular vitelliform dystrophy: one-year results. Retina. 2013;33(3):513–21.

    Article  PubMed  Google Scholar 

  46. Querques G, Zerbib J, Santacroce R, Margaglione M, Delphin N, Rozet JM, et al. Functional and clinical data of Best vitelliform macular dystrophy patients with mutations in the BEST1 gene. Mol Vis. 2009;15:2960–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A, et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet. 2010;19(13):2581–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. George ND, Yates JR, Moore AT. X linked retinoschisis. Br J Ophthalmol. 1995;79(7):697–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A, et al. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet. 1997;17(2):164–70.

    Article  CAS  PubMed  Google Scholar 

  50. Zeng Y, Takada Y, Kjellstrom S, Hiriyanna K, Tanikawa A, Wawrousek E, et al. RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest Ophthalmol Vis Sci. 2004;45(9):3279–85.

    Article  PubMed  Google Scholar 

  51. Kjellstrom S, Bush RA, Zeng Y, Takada Y, Sieving PA. Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration. Invest Ophthalmol Vis Sci. 2007;48(8):3837–45.

    Article  PubMed  Google Scholar 

  52. Janssen A, Min SH, Molday LL, Tanimoto N, Seeliger MW, Hauswirth WW, et al. Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse. Mol Ther. 2008;16(6):1010–7.

    Article  CAS  PubMed  Google Scholar 

  53. Park TK, Wu Z, Kjellstrom S, Zeng Y, Bush RA, Sieving PA, Colosi P. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Ther. 2009;16(7):916–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Roosing S, Thiadens AA, Hoyng CB, Klaver CC, den Hollander AI, Cremers FP. Causes and consequences of inherited cone disorders. Prog Retin Eye Res. 2014;42:1–26.

    Article  CAS  PubMed  Google Scholar 

  56. Small KW, Hermsen V, Gurney N, Fetkenhour CL, Folk JC. North Carolina macular dystrophy and central areolar pigment epithelial dystrophy. One family, one disease. Arch Ophthalmol. 1992;110(4):515–8.

    Article  CAS  PubMed  Google Scholar 

  57. Wen R, Tao W, Li Y, Sieving PA. CNTF and retina. Prog Retin Eye Res. 2012;31(2):136–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Li Y, Tao W, Luo L, Huang D, Kauper K, Stabila P, et al. CNTF induces regeneration of cone outer segments in a rat model of retinal degeneration. PLoS ONE. 2010;5(3), e9495.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103(10):3896–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Kauper K, McGovern C, Sherman S, Heatherton P, Rapoza R, Stabila P, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2012;53(12):7484–91.

    Article  CAS  PubMed  Google Scholar 

  61. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52(5):2219–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Leveillard T, Mohand-Said S, Lorentz O, Hicks D, Fintz AC, Clerin E, et al. Identification and characterization of rod-derived cone viability factor. Nat Genet. 2004;36(7):755–9.

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clerin E, et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther. 2009;17(5):787–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Leveillard T, Sahel JA. Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci Transl Med. 2010;2(26):26ps16.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel JA, Stanga PE, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  PubMed Central  PubMed  Google Scholar 

  66. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Lauritzen TZ, Harris J, Mohand-Said S, Sahel JA, Dorn JD, McClure K, Greenberg RJ. Reading visual braille with a retinal prosthesis. Front Neurosci. 2012;6(168):1–7.

    Google Scholar 

  68. Zrenner E. Will retinal implants restore vision? Science. 2002;295(5557):1022–5.

    Article  CAS  PubMed  Google Scholar 

  69. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278(1711):1489–97.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280(1757):20130077.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng. 2012;9(4):046014.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, et al. Photovoltaic retinal prosthesis with high pixel density. Nat Photonics. 2012;6(6):391–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mandel Y, Goetz G, Lavinsky D, Huie P, Mathieson K, Wang L, et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat Commun. 2013;4:1980.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Li ZY, Kljavin IJ, Milam AH. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci. 1995;15(8):5429–38.

    CAS  PubMed  Google Scholar 

  75. Lin B, Masland RH, Strettoi E. Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res. 2009;88(3):589–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006;50(1):23–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhang Y, Ivanova E, Bi A, Pan ZH. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci. 2009;29(29):9186–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002;296(5577):2395–8.

    Article  CAS  PubMed  Google Scholar 

  79. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263–8.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 2008;11(6):667–75.

    Article  CAS  PubMed  Google Scholar 

  82. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19(7):1220–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;23(1):7–16.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E, Tamai M. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res. 2010;90(3):429–36.

    Article  CAS  PubMed  Google Scholar 

  85. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329(5990):413–7.

    Article  CAS  PubMed  Google Scholar 

  86. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  87. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–7.

    Article  CAS  PubMed  Google Scholar 

  88. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31(8):741–7.

    Article  CAS  PubMed  Google Scholar 

  89. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2013;379(9817):713–20.

    Article  Google Scholar 

  92. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  93. RIKEN. Pilot clinical study into iPS cell therapy for eye disease starts in Japan. . http://www.riken.jp/en/pr/press/2013/20130730_1/. Accessed 12 Aug 2015.

  94. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–1.

    Article  CAS  PubMed  Google Scholar 

  95. Cramer AO, MacLaren RE. Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther. 2013;13(2):139–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Nazari H, Zhang L, Zhu D, Chader GJ, Falabella P, Stefanini F, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.

    Article  CAS  PubMed  Google Scholar 

  97. Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31–66.

    Article  PubMed  Google Scholar 

  98. Auvray M, Hanneton S, O’Regan JK. Learning to perceive with a visuo-auditory substitution system: localisation and object recognition with ‘the vOICe’. Perception. 2007;36(3):416–30.

    Article  PubMed  Google Scholar 

  99. Merabet LB, Battelli L, Obretenova S, Maguire S, Meijer P, Pascual-Leone A. Functional recruitment of visual cortex for sound encoded object identification in the blind. Neuroreport. 2009;20(2):132–8.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Striem-Amit E, Cohen L, Dehaene S, Amedi A. Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron. 2012;76(3):640–52.

    Article  CAS  PubMed  Google Scholar 

  101. Striem-Amit E, Guendelman M, Amedi A. ‘Visual’ acuity of the congenitally blind using visual-to-auditory sensory substitution. PLoS ONE. 2012;7(3):e33136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Sampaio E, Maris S, Bach-y-Rita P. Brain plasticity: ‘visual’ acuity of blind persons via the tongue. Brain Res. 2001;908(2):204–7.

    Article  CAS  PubMed  Google Scholar 

  103. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.

    Article  CAS  PubMed  Google Scholar 

  104. Zarbin MA, Arlow T, Ritch R. Regenerative nanomedicine for vision restoration. Mayo Clin Proc. 2013;88(12):1480–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Alain Sahel MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marazova, K., Sahel, JA. (2016). Macular Dystrophies: Management and Interventions. In: Querques, G., Souied, E. (eds) Macular Dystrophies. Springer, Cham. https://doi.org/10.1007/978-3-319-26621-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26621-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26619-0

  • Online ISBN: 978-3-319-26621-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics