Dynamic Demographic Analysis pp 177-199 | Cite as

# Mortality Crossovers from Dynamic Subpopulation Reordering

## Abstract

Mortality crossovers are often understood to be the result of differential mortality selection. Models of mortality selection commonly assume a single dimension of heterogeneity, which stratifies populations into homogenous frail and robust subpopulations with proportional hazards. We propose a more realistic mortality selection model in which black and white populations are stratified by multiple crosscutting dimensions of heterogeneity, resulting in heterogeneous subpopulations. In the multidimensional model, in contrast to the conventional unidimensional model, the rank order of subpopulation mortalities is dynamic over age. As a result, a crossover can arise in either of two ways: from a change in the share of subpopulations in the black and white populations (analogous to the crossover in the standard, unidimensional mortality selection model), or alternatively, from a change in the rank order of subpopulation mortalities, regardless of subpopulation shares. The latter possibility has no analogue in the standard, unidimensional model. Our results therefore identify a new mechanism by which mortality selection can create mortality crossovers.

## Keywords

Mortality selection Selective mortality Heterogeneity Frailty Mortality crossover Dynamic mortality model## References

- Berkman, L., Singer, B., & Manton, K. (1989). Black-white differences in health status and mortality among the elderly.
*Demography, 26*(4), 661–678. doi: 10.2307/2061264.CrossRefGoogle Scholar - Dupre, M. E., Franzese, A. T., & Parrado, E. A. (2006). Religious attendance and mortality: Implications for the Black-White mortality crossover.
*Demography, 43*(1), 141–164. doi: 10.1353/dem.2006.0004.CrossRefGoogle Scholar - Fenelon, A. (2013). An examination of black/white differences in the rate of age-related mortality increase.
*Demographic Research, 29*(17), 441–472. doi: 10.4054/DemRes.2013.29.17.CrossRefGoogle Scholar - Gampe, J. (2010). Human mortality beyond age 110. In H. Maier, J. Gampe, B. Jeune, J.-M. Robine, & J. Vaupel (Eds.),
*Supercentenarians*(Demographic Research Monographs 7, pp. 219–230). Berlin: Springer. doi: 10.1007/978-3-642-11520-2.CrossRefGoogle Scholar - Horiuchi, S., & Wilmoth, J. R. (1998). Deceleration in the age pattern of mortality at older ages.
*Demography, 35*, 391–412.CrossRefGoogle Scholar - Kestenbaum, B. (1992). A description of the extreme aged population based on improved medicare enrollment data.
*Demography, 29*(4), 565–580. doi: 10.2307/2061852.CrossRefGoogle Scholar - Lynch, S. M., Brown, J. S., & Harmsen, K. G. (2003). Black-white differences in mortality compression and deceleration and the mortality crossover reconsidered.
*Research on Aging, 25*(5), 456–483. doi: 10.1177/0164027503254675.CrossRefGoogle Scholar - Manton, K. G., Stallard, E., Woodbury, M. A., & Dowd, J. E. (1994). Time-varying covariates in models of human mortality and aging: Multidimensional generalizations of the Gompertz.
*Journals of Gerontology, 49*(4), B169–B190. doi: 10.1093/geronj/49.4.b169.CrossRefGoogle Scholar - Manton, K. G., Woodbury, M. A., & Stallard, E. (1995). Sex differences in human mortality and aging at late ages: The effect of mortality selection and state dynamics.
*Gerontologist, 35*(5), 597–608. doi: 10.1093/geront/35.5.597.CrossRefGoogle Scholar - Masters, R. K. (2012). Uncrossing the U.S. Black-white mortality crossover: The role of cohort forces in life course mortality risk.
*Demography, 49*(3), 773–796. doi: 10.1007/s13524-012-0107-y.CrossRefGoogle Scholar - Missov, T. I., & Finkelstein, M. S. (2011). Admissible mixing distributions for a general class of mixture survival models with known asymptotics.
*Theoretical Population Biology, 80*, 64–70.CrossRefGoogle Scholar - Preston, S. H., Elo, I. T., Hill, M. E., & Rosenwaike, I. (2003).
*The demography of African Americans, 1930–1990*. Norwell: Kluwer/Springer. doi: 10.1007/978-94-017-0325-3.CrossRefGoogle Scholar - Sautter, J. M., Thomas, P. A., Dupre, M. E., & George, L. K. (2012). Socioeconomic status and the black-white mortality crossover.
*American Journal of Public Health, 102*(8), 1566–1571. doi: 10.2105/ajph.2011.300518.CrossRefGoogle Scholar - Steinsaltz, D. R., & Wachter, K. W. (2006). Understanding mortality rate deceleration and heterogeneity.
*Mathematical Population Studies, 13*, 19–37.CrossRefGoogle Scholar - Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics.
*American Statistician, 39*(3), 176–185. doi: 10.1080/00031305.1985.10479424.Google Scholar - Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). Impact of heterogeneity in individual frailty on the dynamics of mortality.
*Demography, 16*(3), 439–454. doi: 10.2307/2061224.CrossRefGoogle Scholar - Wilmoth, J. R., & Dennis, M. (2007). Social differences in older adult mortality in the United States: Questions, data, methods, and results. In J. M. Robine, E. I. Crimmins, S. Horiuchi, & Y. Zeng (Eds.),
*Human longevity, individual life duration, and the growth of the oldest-old population*(pp. 297–332). Dordrecht: Springer. doi: 10.1007/978-1-4020-4848-7_14.CrossRefGoogle Scholar - Woodbury, M. A., & Manton, K. G. (1983). A mathematical model of the physiological dynamics of aging and correlated mortality selection. 1: Theoretical development and critiques.
*Journals of Gerontology, 38*, 398–405. doi: 10.1093/geronj/38.4.398.CrossRefGoogle Scholar - Wrigley-Field, E. & Elwert, F. (2015).
*Multidimensional mortality selection and the black-white mortality crossover*. Paper presented at the Population Association of America: April, San Diego.Google Scholar - Yao, L., & Robert, S. A. (2011). Examining the racial crossover in mortality between African American and White older adults: A multilevel survival analysis of race, individual socioeconomic status, and neighborhood socioeconomic context.
*Journal of Aging Research, 1–8*.Google Scholar - Zeng, Y., & Vaupel, J. W. (2003). Oldest-old mortality in China.
*Demographic Research, 8*(7), 215–244. doi: 10.4054/demres.2003.8.7.CrossRefGoogle Scholar