Advertisement

Mortality Crossovers from Dynamic Subpopulation Reordering

  • Elizabeth Wrigley-FieldEmail author
  • Felix Elwert
Chapter
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 39)

Abstract

Mortality crossovers are often understood to be the result of differential mortality selection. Models of mortality selection commonly assume a single dimension of heterogeneity, which stratifies populations into homogenous frail and robust subpopulations with proportional hazards. We propose a more realistic mortality selection model in which black and white populations are stratified by multiple crosscutting dimensions of heterogeneity, resulting in heterogeneous subpopulations. In the multidimensional model, in contrast to the conventional unidimensional model, the rank order of subpopulation mortalities is dynamic over age. As a result, a crossover can arise in either of two ways: from a change in the share of subpopulations in the black and white populations (analogous to the crossover in the standard, unidimensional mortality selection model), or alternatively, from a change in the rank order of subpopulation mortalities, regardless of subpopulation shares. The latter possibility has no analogue in the standard, unidimensional model. Our results therefore identify a new mechanism by which mortality selection can create mortality crossovers.

Keywords

Mortality selection Selective mortality Heterogeneity Frailty Mortality crossover Dynamic mortality model 

References

  1. Berkman, L., Singer, B., & Manton, K. (1989). Black-white differences in health status and mortality among the elderly. Demography, 26(4), 661–678. doi: 10.2307/2061264.CrossRefGoogle Scholar
  2. Dupre, M. E., Franzese, A. T., & Parrado, E. A. (2006). Religious attendance and mortality: Implications for the Black-White mortality crossover. Demography, 43(1), 141–164. doi: 10.1353/dem.2006.0004.CrossRefGoogle Scholar
  3. Fenelon, A. (2013). An examination of black/white differences in the rate of age-related mortality increase. Demographic Research, 29(17), 441–472. doi: 10.4054/DemRes.2013.29.17.CrossRefGoogle Scholar
  4. Gampe, J. (2010). Human mortality beyond age 110. In H. Maier, J. Gampe, B. Jeune, J.-M. Robine, & J. Vaupel (Eds.), Supercentenarians (Demographic Research Monographs 7, pp. 219–230). Berlin: Springer. doi: 10.1007/978-3-642-11520-2.CrossRefGoogle Scholar
  5. Horiuchi, S., & Wilmoth, J. R. (1998). Deceleration in the age pattern of mortality at older ages. Demography, 35, 391–412.CrossRefGoogle Scholar
  6. Kestenbaum, B. (1992). A description of the extreme aged population based on improved medicare enrollment data. Demography, 29(4), 565–580. doi: 10.2307/2061852.CrossRefGoogle Scholar
  7. Lynch, S. M., Brown, J. S., & Harmsen, K. G. (2003). Black-white differences in mortality compression and deceleration and the mortality crossover reconsidered. Research on Aging, 25(5), 456–483. doi: 10.1177/0164027503254675.CrossRefGoogle Scholar
  8. Manton, K. G., Stallard, E., Woodbury, M. A., & Dowd, J. E. (1994). Time-varying covariates in models of human mortality and aging: Multidimensional generalizations of the Gompertz. Journals of Gerontology, 49(4), B169–B190. doi: 10.1093/geronj/49.4.b169.CrossRefGoogle Scholar
  9. Manton, K. G., Woodbury, M. A., & Stallard, E. (1995). Sex differences in human mortality and aging at late ages: The effect of mortality selection and state dynamics. Gerontologist, 35(5), 597–608. doi: 10.1093/geront/35.5.597.CrossRefGoogle Scholar
  10. Masters, R. K. (2012). Uncrossing the U.S. Black-white mortality crossover: The role of cohort forces in life course mortality risk. Demography, 49(3), 773–796. doi: 10.1007/s13524-012-0107-y.CrossRefGoogle Scholar
  11. Missov, T. I., & Finkelstein, M. S. (2011). Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology, 80, 64–70.CrossRefGoogle Scholar
  12. Preston, S. H., Elo, I. T., Hill, M. E., & Rosenwaike, I. (2003). The demography of African Americans, 1930–1990. Norwell: Kluwer/Springer. doi: 10.1007/978-94-017-0325-3.CrossRefGoogle Scholar
  13. Sautter, J. M., Thomas, P. A., Dupre, M. E., & George, L. K. (2012). Socioeconomic status and the black-white mortality crossover. American Journal of Public Health, 102(8), 1566–1571. doi: 10.2105/ajph.2011.300518.CrossRefGoogle Scholar
  14. Steinsaltz, D. R., & Wachter, K. W. (2006). Understanding mortality rate deceleration and heterogeneity. Mathematical Population Studies, 13, 19–37.CrossRefGoogle Scholar
  15. Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. American Statistician, 39(3), 176–185. doi: 10.1080/00031305.1985.10479424.Google Scholar
  16. Vaupel, J. W., Manton, K. G., & Stallard, E. (1979). Impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16(3), 439–454. doi: 10.2307/2061224.CrossRefGoogle Scholar
  17. Wilmoth, J. R., & Dennis, M. (2007). Social differences in older adult mortality in the United States: Questions, data, methods, and results. In J. M. Robine, E. I. Crimmins, S. Horiuchi, & Y. Zeng (Eds.), Human longevity, individual life duration, and the growth of the oldest-old population (pp. 297–332). Dordrecht: Springer. doi: 10.1007/978-1-4020-4848-7_14.CrossRefGoogle Scholar
  18. Woodbury, M. A., & Manton, K. G. (1983). A mathematical model of the physiological dynamics of aging and correlated mortality selection. 1: Theoretical development and critiques. Journals of Gerontology, 38, 398–405. doi: 10.1093/geronj/38.4.398.CrossRefGoogle Scholar
  19. Wrigley-Field, E. & Elwert, F. (2015). Multidimensional mortality selection and the black-white mortality crossover. Paper presented at the Population Association of America: April, San Diego.Google Scholar
  20. Yao, L., & Robert, S. A. (2011). Examining the racial crossover in mortality between African American and White older adults: A multilevel survival analysis of race, individual socioeconomic status, and neighborhood socioeconomic context. Journal of Aging Research, 1–8.Google Scholar
  21. Zeng, Y., & Vaupel, J. W. (2003). Oldest-old mortality in China. Demographic Research, 8(7), 215–244. doi: 10.4054/demres.2003.8.7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Robert Wood Johnson Foundation Health and Society Scholars ProgramINCITE, Columbia UniversityNew YorkUSA
  2. 2.Department of Sociology and Minnesota Population CenterUniversity of Minnesota, Twin CitiesMinneapolisUSA
  3. 3.Department of SociologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Social Science Research Center BerlinBerlinGermany

Personalised recommendations