Revisiting Mortality Deceleration Patterns in a Gamma-Gompertz-Makeham Framework

  • Filipe RibeiroEmail author
  • Trifon I. Missov
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 39)


We calculate life-table aging rates (LARs) for overall mortality by estimating a gamma-Gompertz-Makeham (ΓGM) model and taking advantage of LAR’s parametric representation by Vaupel and Zhang (Demogr Res 23(26), 737–748, 2010). For selected HMD countries, we study how the evolution of estimated LAR patterns could explain observed (1) longevity dynamics, and (2) mortality improvement or deterioration at different ages. Surprisingly, the age of mortality deceleration x showed almost no correlation with a number of longevity measures apart from e0. In addition, as mortality concentrates at older ages with time, its characteristic bell-shaped pattern becomes more pronounced. Moreover, in a ΓGM framework, we identify the impact of senescent mortality on shape of the rate of population aging. We also find evidence for a strong relationship between x and the statistically significant curvilinear changes in the evolution of e0 over time. Finally, model-based LARs appear to be consistent with point (b) of the “heterogeneity hypothesis” (Horiuchi and Wilmoth, J Gerontol Biol Sci 52A(1), B67–B77, 1997): mortality deceleration, due to selection effects, should shift to older ages as the level of total adult mortality declines.


Mortality deceleration LAR Longevity dynamics Heterogeneity 


  1. Brillinger, D. R. (1986). The natural variability of vital rates and associated statistics. Biometrics, 42, 693–734.CrossRefGoogle Scholar
  2. Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic Research, 19(30), 659–686.Google Scholar
  3. Carey, J. R., & Liedo, P. (1995). Sex-specific life table aging rates in large medfly cohorts. Experimental Gerontology, 30, 315–325.CrossRefGoogle Scholar
  4. Cheung, S. L. K., & Robine, J. M. (2007). Increase in common longevity and the compression of mortality: The case of Japan. Population Studies, 19(30), 85–97.CrossRefGoogle Scholar
  5. Cheung, S. L. K., Robine, J. -M., Tu, E. J. C., & Caselli, G. (2005). Three dimensions of the survival curve: Horizontalization, verticalization, and longevity extension. Demography, 42(2), 243–258.CrossRefGoogle Scholar
  6. Gampe, J. (2010). Human mortality beyond age 110. In H. Maier, J. G. B. Jeune, J. M. Robine, & J. W. Vaupel (Eds.), Supercentenarians (pp. 219–230). Heidelberg: Springer.CrossRefGoogle Scholar
  7. Gavrilov, L. A., & Gavrilova, N. S. (2011). Mortality measurement at advanced ages: A study of the social security administration death master file. North American Actuarial Journal, 15(3), 442–447.CrossRefGoogle Scholar
  8. Golubev, A. (2004). Does Makeham make sense? Biogerontology, 5, 159–167.CrossRefGoogle Scholar
  9. Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 115, 513–585.CrossRefGoogle Scholar
  10. HMD (2015). The human mortality database. Accessed January 23, 2015. Google Scholar
  11. Horiuchi, S., & Coale, A. J. (1990). Age patterns of mortality for older women: An analysis using the age-specific rate of mortality change with age. Mathematical Population Studies, 2(4), 245–267.CrossRefGoogle Scholar
  12. Horiuchi, S., & Wilmoth, J. R. (1997). Age patterns of the life table aging rate for major causes of death in Japan, 1951–1990. Journal of Gerontology: Biological Sciences, 52A(1), B67–B77.Google Scholar
  13. Horiuchi, S., & Wilmoth, J. R. (1998). Deceleration in the age pattern of mortality at older ages. Demography, 35(4), 391–412.CrossRefGoogle Scholar
  14. Horiuchi, S., Cheung, S. L. K., & Robine, J. M. (2012). Cause-of-death decomposition of old-age mortality compression. In 2012 Annual Meeting of the Population Association of America (PAA), San Francisco.Google Scholar
  15. Horiuchi, S., Ouellette, N., Cheung, S. L. K., & Robine, J. M. (2013). Modal age at death: Lifespan indicator in the era of longevity extension. Vienna Yearbook of Population Research, 11, 37–69.CrossRefGoogle Scholar
  16. Kannisto, V. (2001). Mode and dispersion of length of life. Population: An English Selection, 13, 159–171.Google Scholar
  17. Makeham, W. M. (1860). On the law of mortality. Journal of the Institute of Actuaries, 13, 283–287.Google Scholar
  18. Missov, T. I., & Finkelstein, M. (2011). Admissible mixing distributions for a general class of mixture survival models with known asymptotics. Theoretical Population Biology, 80(1), 64–70.CrossRefGoogle Scholar
  19. Missov, T. I., & Ribeiro, F. (2016, forthcoming). Do individuals age at the same rate? Findings from cause-of-death data. Demography.Google Scholar
  20. Missov, T. I., & Vaupel, J. W. (2015). Mortality implications of mortality plateaus. SIAM Review, 57(1), 61–70.CrossRefGoogle Scholar
  21. Missov, T. I., Lenart, A., Nemeth, L., Canudas-Romo, V., & Vaupel, J. W. (2015). The Gompertz force of mortality in terms of the modal age at death. Demographic Research, 32(36), 1031–1048.CrossRefGoogle Scholar
  22. Muggeo, V. (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22, 3055–3071.CrossRefGoogle Scholar
  23. Nemeth, L., & Missov, T. I. (2014). How wrong could parameter estimates be? Statistical consequences of fitting the wrong model to human mortality data. In 2014 European Population Conference, Budapest.Google Scholar
  24. Oeppen, J., & Vaupel, J. W. (2002). Broken limits to life expectancy. Science, 296, 1029–1031.CrossRefGoogle Scholar
  25. Pollard, J. H. (1998a). An old tool–modern applications (Research paper series no. 001/98). School of Economic and Financial Studies, Macquarie University, Sydney.Google Scholar
  26. Pollard, J. H. (1998b). Keeping abreast of mortality change (Research paper series no. 002/98). School of Economic and Financial Studies, Macquarie University, Sydney.Google Scholar
  27. Preston, S., Heuveline, P., & Guillot, M. (2001). Demography: Measuring and modeling population processes. Malden: Wiley-Blackwell.Google Scholar
  28. Pyrozhkov, S., Foygt, N., & Jdanov, D. (2011). About mortality data for Ukraine. In Human mortality database background and documentation.
  29. Ribeiro, F., & Missov, T. I. (2014). Mortality inferences from estimated life-table aging rates in a gamma-Gompertz-Makeham framework. In 2014 Annual Meeting of the Population Association of America (PAA), Boston.Google Scholar
  30. Thatcher, A. R., Kannisto, V., & Vaupel, J. W. (1998). The force of mortality at ages 80 to 120 (Monographs on population aging, Vol. 5). Odense: Odense University Press.Google Scholar
  31. Vaupel, J. W., & Missov, T. I. (2014). Unobserved heterogeneity: A review of formal relationships. Demographic Research, 31(22), 659–686.CrossRefGoogle Scholar
  32. Vaupel, J. W., & Yashin, A. I. (1985). Heterogeneity’s ruses: Some surprising effects of selection on population dynamics. The American Statistician, 39, 176–185.Google Scholar
  33. Vaupel, J. W., & Zhang, Z. (2010). Attrition in heterogeneous cohorts. Demographic Research, 23(26), 737–748.CrossRefGoogle Scholar
  34. Wilmoth, J. R., & Horiuchi, S. (1999). Rectangularization revisited: Variability of age at death within human populations. Demography, 4(36), 475–495.CrossRefGoogle Scholar
  35. Vaupel, J. W., Manton, K., & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 855–860.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CIDEHUS.UE – University of ÉvoraPalácio do Vimioso – Largo do Marquês de Marialva 8ÉvoraPortugal
  2. 2.Max Planck Institute for Demographic ResearchKonrad-Zuse-Str. 1RostockGermany
  3. 3.Mathematical DemographyUniversity of RostockRostockGermany

Personalised recommendations