Modeling the Dynamics of an HIV Epidemic

  • Jason R. ThomasEmail author
  • Le Bao
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 39)


The evolution of an HIV epidemic involves many population dynamics that are closely linked with age. Understanding these dynamics can help policy makers and program planners design interventions, measure progress in the fight against HIV, and prepare for the future impact of the disease. To this end, we propose a model for sex- and age-specific projections of HIV prevalence that uses B-splines to model changes in HIV incidence. We are able to combine HIV prevalence data from antenatal clinics with prevalence data from nationally representative surveys to estimate the model parameters. Several approaches are also proposed for generating forecasts from our relatively parsimonious B-spline model. We apply these techniques to investigate the dynamics of HIV incidence in Tanzania. The results support a rapid increase in HIV incidence from the early 1980s to the early 1990s, followed by a decline up through 2003. We also generate forecasts of HIV prevalence for 2007 and 2011, and compare them to nationally representative data from these years. Our assessment of the predictive performance of the approaches suggests that additional information is needed to produce accurate forecasts of sex- and age-specific prevalence, but that B-splines provide a potentially useful approach for achieving this goal.


HIV Splines Population dynamics Population projection Forecast 



This research was supported by grants from the NICHD (R24HD041025) and the NIA (P30AG17266). The authors thank Robert Schoen and an anonymous reviewer for helpful comments on this manuscript.


  1. Alkema, L., Raftery, A. E., & Clark, S. J. (2007). Probabilistic projections of HIV prevalence using Bayesian melding. Annals of Applied Statistics, 1(1), 229–248. doi:10.1214/07-AOAS111.CrossRefGoogle Scholar
  2. Bongaarts, J., Buettner, T., Heilig, G., & Pelletier, F. (2008). Has the HIV epidemic peaked? Population and Development Review, 34(2), 199–224. doi:10.1111/j.1728-4457.2008.00217.x.CrossRefGoogle Scholar
  3. Brookmeyer, R., & Konikoff, J. (2011). Statistical considerations in determining HIV incidence from changes in HIV prevalence. Statistical Communications in Infectious Diseases, 3(9). doi:10.2202/1948-4690.1044.Google Scholar
  4. Cheluget, B., Baltazar, G., Orege, P., Ibrahim, M., Marum, L., & Stover, J. (2006). Evidence for population level declines in adult HIV prevalence in Kenya. Sexually Transmitted Infections, 82, i21–i26. doi:10.1136/sti.2005.015990.CrossRefGoogle Scholar
  5. Chin, J., & Lwanga, S. (1991). Estimation and projection of adult AIDS cases. A simple epidemiological model, 69(4), 399–406.Google Scholar
  6. Clark, S. J., Thomas, J., & Bao, L. (2012). Estimates of age-specific reductions in HIV prevalence in Uganda: Bayesian melding estimation and probabilistic population forecast with an HIV-enabled cohort component projection model. Demographic Research, 27(26), 743–774. doi:10.4054/DemRes.2012.27.26.CrossRefGoogle Scholar
  7. Cohen, M. S., Chen, Y. Q., McCauley, M., Gamble, T., Hosseinipour, M. C., Kumarasamy, N., Hakim, J. G., Kumwenda, J., Grinsztejn, B., Pilotto, J. H., Godbole, S. V., Mehendale, S., Chariyalertsak, S., Santos, B. R., Mayer, K. H., Hoffman, I. F., Eshleman, S. H., Piwowar-Manning, E., Wang, L., Makhema, J., Mills, L. A., de Bruyn, G., Sanne, I., Eron, J., Gallant, J., Havlir, D., Swindells, S., Ribaudo, H., Elharrar, V., Burns, D., Taha, T. E., Nielsen-Saines, K., Celentano, D., Essex, M., & Fleming, T. R. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. New England Journal of Medicine, 365(6), 493–505. doi:10.1056/NEJMoa1105243. pMID: 21767103.CrossRefGoogle Scholar
  8. Currie, I. D., Durban, M., & Eilers, P. H. C. (2004). Smoothing and forecasting mortality rates. Statistical Modelling, 4(4), 279–298. doi:10.1191/1471082X04st080oa.CrossRefGoogle Scholar
  9. de Boor, C. (1978). A practical guide to splines. Berlin: Springer.CrossRefGoogle Scholar
  10. Diaz, T., Garcia-Calleja, J., Ghys, P., & Sabin, K. (2009). Advances and future directions in HIV surveillance in low-and middle-income countries. Current Opinion in HIV and AIDS, 4, 253–259. doi:10.1097/COH.0b013e32832c1898.CrossRefGoogle Scholar
  11. Eilers, P. H., & Marx, B. D. (1996). Flexible smoothing with b-splines and penalties. Statistical Science, 11, 89–121. doi:10.1214/ss/1038425655.CrossRefGoogle Scholar
  12. Eyawo, O., de Walque, D., Ford, N., Gakii, G., Lester, R. T., & Mills, E. J. (2010). HIV status in discordant couples in sub-Saharan Africa: A systematic review and meta-analyis. Lancet, 10, 770–777. doi:10.1016/S1473-3099(10)70189-4.CrossRefGoogle Scholar
  13. Fylkesnes, K., Musonda, R., Sichone, M., Ndhlovu, Z., Tembo, F., & Monze, M. (2001). Declining HIV prevalence and risk behaviours in Zambia: Evidence from surveillance and population-based surveys. AIDS, 15(7), 907–916. doi:10.1097/00002030-200105040-00011.CrossRefGoogle Scholar
  14. Garcia-Calleja, J., Zaniewski, E., Ghys, P., Stanecki, K., & Walker, N. (2004). A global analysis of trends in the quality of HIV sero-surveillance. Sex Transm Infect, 80, i25–i30. doi:10.1136/sti.2004.010298.CrossRefGoogle Scholar
  15. Ghys, P. D., Kufa, E., & George, M. V. (2006). Measuring trends in prevalence and incidence of HIV infection in countries with generalised epidemics. Sexually Transmitted Infections, 82(suppl 1), i52–i56. doi:10.1136/sti.2005.016428.CrossRefGoogle Scholar
  16. Gouws, E., Mishra, V., & Fowler, T. (2008). Comparison of adult HIV prevalence from national population-based surveys and antenatal clinic surveillance in countries with generalised epidemics: Implications for calibrating surveillance data. Sexually Transmitted Infections, 84(Supplement 1), i17–i23. doi:10.1136/sti.2008.030452.Google Scholar
  17. Gregson, S., Garnett, G. P., Nyamukapa, C. A., Hallett, T. B., Lewis, J. J. C., Mason, P. R., Chandiwana, S. K., & Anderson, R. M. (2006). HIV decline associated with behavior change in Eastern Zimbabwe. Science, 311(5761), 664–666. doi:10.1126/science.1121054.CrossRefGoogle Scholar
  18. Halperin, D. T., Mugurungi, O., Hallett, T. B., Muchini, B., Campbell, B., Magure, T., Benedikt, C., & Gregson, S. (2011). A surprising prevention success: Why did the HIV epidemic decline in Zimbabwe? PLoS Medicine, 8(2), e1000,414. doi:10.1371/journal.pmed.1000414.CrossRefGoogle Scholar
  19. Heuveline, P. (2003). HIV and population dynamics: A general model and maximum-likelihood standards for East Africa. Demography, 40(2), 217–245. doi:10.1353/dem.2003.0013.CrossRefGoogle Scholar
  20. Hogan, D., & Salomon, J. (2012). Spline-based modelling of trends in the force of HIV infection, with application to the UNAIDS estimation and projection package. Sexually Transmitted Infections. doi:10.1136/sextrans-2012-050652.Google Scholar
  21. Hogan, D., Zaslavsky, A., Hammitt, J., & Salomon, J. (2010). Flexible epidemiological model for estimates and short-term projections in generalised HIV/AIDS epidemics. Sexually Transmitted Infections. doi:10.1136/sti.2010.045104.Google Scholar
  22. Hollingsworth, T., Anderson, R., & Fraser, C. (2008). HIV-1 transmission, by stage of infection. Journal of Infectious Diseases, 198, 687–693. doi:10.1086/590501.CrossRefGoogle Scholar
  23. Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective. Journal of the Royal Statistical Society Series A (Statistics in Society), 154(3), 371–412. doi:10.2307/2983150.CrossRefGoogle Scholar
  24. Keyfitz, N., & Caswell, H. (2005). Applied mathematical demograph (3rd ed.). New York: Springer.Google Scholar
  25. Kimanga, D. O., Ogola, S., Umuro, M., Ng’ang’a, A., Kimondo, L., Murithi, P., Muttunga, J., Waruiru, W., Mohammed, I., Sharrif, S., De Cock, K. M., & Kim, A. A. (2014). Prevalence and incidence of HIV infection, trends, and risk factors among persons aged 15–64 years in Kenya: Results from a nationally representative study. Journal of Acquired Immune Deficiency Syndromes, 66, S13–S26. doi:10.1097/QAI.0000000000000124.CrossRefGoogle Scholar
  26. Kranzer, K., Govindasamy, D., Ford, N., Johnston, V., & Lawn, S. (2012). Quantifying and addressing losses along the continuum of care for people living with HIV infection in sub-Saharan Africa: A systematic review. Journal of the International AIDS Society, 15(2), 17,838. doi:10.7448/IAS.15.2.17383.Google Scholar
  27. Lang, S., & Brezger, A. (2004). Bayesian p-splines. Journal of Computational and Graphical Statistics, 13, 183–212. doi:10.1198/1061860043010.CrossRefGoogle Scholar
  28. Mahy, M., Garcia-Calleja, J. M., & Marsh, K. A. (2012). Trends in HIV prevalence among young people in generalised epidemics: Implications for monitoring the HIV epidemic. Sexually Transmitted Infections, 88(Suppl 2), i65–i75. doi:10.1136/sextrans-2012-050789.CrossRefGoogle Scholar
  29. Marsh, K., Mahy, M., Salomon, J. A., & Hogan, D. R. (2014). Assessing and adjusting for differences between HIV prevalence estimates derived from national population-based surveys and antenatal care surveillance, with applications for Spectrum 2013. AIDS, 28, S497–S505. doi:10.1097/QAD.0000000000000453.CrossRefGoogle Scholar
  30. Mbulaiteye, S., Mahe, C., Whitworth, J., Ruberantwari, A., Nakiyingi, J., Ojwiya, A., & Kamali, A. (2002). Declining HIV-1 incidence and associated prevalence over 10 years in a rural population in South-West Uganda: A cohort study. Lancet, 360. doi:10.1016/S0140-6736(02)09331-5.Google Scholar
  31. Ministry of Health. (2000). National package of essential health interventions in Tanzania (Technical report). The United Republic of Tanzania.Google Scholar
  32. Nagelkerke, N. J. D., Arora, P., Jha, P., Williams, B., McKinnon, L., & de Vlas, S. J. (2014). The rise and fall of HIV in high-prevalence countries: A challenge for mathematical modeling. PLoS Computational Biology, 10(3), e1003,459. doi:10.1371/journal.pcbi.1003459.CrossRefGoogle Scholar
  33. National AIDS Control Programme. (2005). HIV/AIDS/STI surveillance report. United Republic of Tanzania, Ministry of Health and Social Welfare: Dar es Salaam.Google Scholar
  34. National AIDS Control Programme. (2010). National guidelines for quality improvement of HIV and AIDS services. United Republic of Tanzania. Ministry of Health and Social Welfare: Dar es Salaam.Google Scholar
  35. Parkhurst, J. O. (2008). “What worked?”: The evidence challenges in determining the causes of HIV prevalence decline. AIDS Education and Prevention, 20(3), 275–283. doi:10.1521/aeap.2008.20.3.275.CrossRefGoogle Scholar
  36. Preston, S. H., Heuveline, P., & Guillot, M. (2001). Demography: Measuring and modeling population processes. Malden, Massachusetts: Blackwell.Google Scholar
  37. Raftery, A. E., & Bao, L. (2010). Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics, 66(4), 1162–1173. doi:10.1111/j.1541-0420.2010.01399.x.CrossRefGoogle Scholar
  38. Scott-Sheldon, L. A., Heudo-Medina, T. B., Warren, M. R., Johnson, B. T., & Carey, M. P. (2011). Efficacy of behavioral interventions to increase condom use and reduce sexually transmitted infections: A meta-analysis, 19991 to 2010. Journal of Acquired Immune Deficiency Syndrome. doi:10.1097/QAI.0b013e31823554d7.Google Scholar
  39. Shelton, J., Halperin, D., & Wilson, D. (2006). Has global HIV incidence peaked? Lancet, 367, 1120–1122. doi:10.1016/S0140-6736(06)68436-5.CrossRefGoogle Scholar
  40. Stoneburner, R. L., & Low-Beer, D. (2004). Population-level HIV declines and behavioral risk avoidance in Uganda. Science, 304(5671), 714–718. doi:10.1126/science.1093166.CrossRefGoogle Scholar
  41. Tanser, F., Bärnighausen, T., Grapsa, E., Zaidi, J., & Newell, M. L. (2013). High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science, 339(6122), 966–971. doi:10.1126/science.1228160.CrossRefGoogle Scholar
  42. Tanzania Commission for AIDS (TACAIDS), National nStatistics (NBS) and ORC Macro. (2005). Tanzania HIV/AIDS indicator survey 2003–2004. Calverton: TACAIDS and ORC Macro.Google Scholar
  43. Tanzania Commission for AIDS (TACAIDS). (2007). The second national multi-sectoral strategic framework on HIV and AIDS (2008–2012). TACAIDS, United Republic of Tanzania, Prime Minister’s Office: nnSalaam.Google Scholar
  44. Tanzania Commission for AIDS (TACAIDS), Zanzibar AIDS Commission (ZAC), National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), & Macro International Inc. (2008). Tanzania HIV/AIDS and Malaria indicator survey 2007–2008. Dar es Salaam: TACAIDS, ZAC, NBS, OCGS, and Macro International Inc.Google Scholar
  45. Tanzania Commission for AIDS (TACAIDS), Zanzibar AIDS Commission (ZAC), National nStatistics (NBS), nthe Chief Government Statistician (OCGS), & ICF International. (2013). Tanzania HIV/AIDS and Malaria indicator survey 2011–2012. Dar es Salaam: TACAIDS, ZAC, NBS, OCGS, and ICF.Google Scholar
  46. The International Group on Analysis of Trends in HIV Prevalence and Behaviours in Young People in Countries most Affected by HIV. (2010). Trends in HIV prevalence and sexual behaviour among young people aged 15–24 years in countries most affected by HIV. Sexually Transmitted Infections, 86(Suppl 2), ii72–ii83. doi:10.1136/sti.2010.044933.Google Scholar
  47. Thomas, J. R., & Clark, S. J. (2011). More on the cohort-component model of population projection in the context of HIV/AIDS: A Leslie matrix representation and new estimates. Demographic Research, 25(2), 39–102. doi:10.4054/DemRes.2011.25.2.CrossRefGoogle Scholar
  48. Todd, J., Glynn, J. R., Marston, M., Lutalo, T., Biraro, S., Mwita, W., Suriyanon, V., Rangsin, R., Nelson, K. E., Sonnenberg, P., Fitzgerald, D., Karita, E., & Zaba, B. (2007). Time from HIV seroconversion to death: A collaborative analysis of eight studies in six low and middle-income countries before highly active antiretroviral therapy. AIDS, 21(Suppl 6), S55–S63. doi:10.1097/01.aids.0000299411.75269.e8.CrossRefGoogle Scholar
  49. UNAIDS. (1998a). Report on the global HIV/AIDS epidemic. Geneva: Joint United Nations Programme on HIV/AIDS (UNAIDS).Google Scholar
  50. UNAIDS. (1998b). Trends in HIV incidence and prevalence: Natural course of the epidemic or results of behavioural change? Geneva: Joint United Nations Programme on HIV/AIDS (UNAIDS).Google Scholar
  51. UNAIDS. (2006). Improving parameter estimation, projection methods, uncertainty estimation, and epidemic classification. London: Imperial College.Google Scholar
  52. UNAIDS. (2013). Global report: UNAIDS report on the global AIDS epidemic 2013. Geneva: Joint United Nations Programme on HIV/AIDS (UNAIDS).Google Scholar
  53. UNAIDS and the World Health Organization. (2015). Technical update on HIV incidence assays for surveillance and monitoring purposes. Geneva: Joint United Nations Programme on HIV/AIDS (UNAIDS).Google Scholar
  54. United Nations, Department of Economic and Social Affairs, Statistics Division. (2014). World statistics pocketbook 2014 edition. New York: United Nations.Google Scholar
  55. Walker, N., Garcia-Calleja, J., Heaton, L., Asamoah-Odei, E., Poumerol, G., Lazzari, S., Ghys, P., Schwartlander, B., & Stanecki, K. (2001). Epidemiological analysis of the quality of HIV sero-surveillance in the world: How well do we track the epidemic? AIDS, 15, 1545–1554. doi:10.1097/00002030-200108170-00012.CrossRefGoogle Scholar
  56. Walker, N., Grassly, N., Garnett, G., Stanecki, K., & Ghys, P. (2004). Estimating the global burden of HIV/AIDS: What do we really know about the HIV pandemic? Lancet, 363, 2180–2185. doi:10.1016/S0140-6736(04)16511-2.CrossRefGoogle Scholar
  57. Wawer, M. J., Gray, R. H., Sewankambo, N. K., Serwadda, D., Li, X., Laeyendecker, O., Kiwanuka, N., Kigozi, G., Kiddugavu, M., Lutalo, T., Nalugoda, F., Wabwire-Mangen, F., Meehan, M. P., & Quinn, T. C. (2005). Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. Journal of Infectious Diseases, 191(9), 1403–1409. doi:10.1086/429411.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Sociology and CriminologyPenn State UniversityUniversity ParkUSA
  2. 2.Department of StatisticsPenn State UniversityUniversity ParkUSA

Personalised recommendations