Advertisement

Estimating the Demographic Dynamic of Small Areas with the Kalman Filter

  • Manuel Ordorica-MelladoEmail author
  • Víctor M. García-Guerrero
Chapter
Part of the The Springer Series on Demographic Methods and Population Analysis book series (PSDE, volume 39)

Abstract

The aim of this chapter is to present a heuristic methodology to estimate the population for small areas. The method is a derivation of the Kalman filter, used to estimate the population without information on births, deaths or migration. The methodology proposed would make it possible to combine different sources of information, such as the census data and geographic information based on the evolution of the habitable area. One advantage of the method proposed in this work is that the estimation of the population is based on information that is entirely different from that normally used by demographers: the area of the geographic zone under study. The method proposed is applied to estimate the population in a hamlet with an area of 2.5 km2 (Villa Milpa Alta in Mexico City) offering reasonably good results. The Kalman filter can also be extremely useful estimating the population in ancient times, where the only source of information is the area inhabited.

Keywords

Demographic estimates Small area estimation Kalman filter Heuristic methods Mexican population 

References

  1. Arriaga, E. (2001). Population analysis with microcomputers [Spanish title El análisis de la población con microcomputadoras]. Cordoba-Argentina: National University of Córdoba.Google Scholar
  2. Bay, G. (1998). The use of symptomatic variables in population estimation of small areas [Spanish title “El uso de variables sintomáticas en la estimación de la población de áreas menores”], Notas de Población No. 67/68. Santiago-Chile, CELADE, pp. 181–208. Available at http://www.cepal.cl/publicaciones/xml/1/5431/LCG2048_p7.pdf
  3. Bogue, D. J. (1950). A technique for making extensive population estimates. Journal of the American Statistical Association, 45(250), 149–163.CrossRefGoogle Scholar
  4. Cavenaghi, S. (2012). Population estimates and projections in Latin America [in Spanish Estimaciones y proyecciones de población en América Latina: desafíos de una agenda pendiente] Serie E- Investigaciones N.° 2/ALAP, Rio de Janeiro-Brazil.Google Scholar
  5. Chaves Esquivel, E. (2001). Symptomatic variables in population estimates at the Canton level in Costa Rica [Spanish title “Variables sintomáticas en las estimaciones poblacionales a nivel cantonal en Costa Rica”] Notas de Población No 71. Santiago, CELADE, pp. 51–72. Available at http://www.cepal.cl/publicaciones/xml/3/7223/LCG2114_p3.pdf
  6. Duchesne, L. (1987). Method of population projections by sex and age for intermediate and small areas. Method of cohorts ratio [Spanish title Método de proyecciones de población por sexo y edad para áreas intermedias y menores, Método de relación de cohortes] Santiago: CELADE.Google Scholar
  7. Grewal, M. S., & Andrews, A. P. (1993). Kalman filtering: Theory and practice. Prentice-Hall: Englewood Cliffs.Google Scholar
  8. Howe, A. (2004). Assessing the accuracy of Australia’s small area population estimates, 2001. Australian Population Association: Canberra. http://www.apa.org.au/upload/2004-5C_Howe.pdf.Google Scholar
  9. Jardim, M. L. (2001). Use of symptomatic variables to estimate the population spatial distribution. Application to Rio Grande du Sul’s Municipalities [Spanish title “Uso de variables sintomáticas para estimar la distribución espacial de población. Aplicación a los municipios de Rio Grande do Sul, Brasil”], Notas de Población No 71. Santiago, CELADE, pp. 21–50. Available at http://www.cepal.cl/publicaciones/xml/3/7223/LCG2114_p2.pdf
  10. Madeira, J. L., & Simões, C. C. S. (1972). Estimativas preliminares da populaςaõ urbana e rural, Segundo as unidades da Federaςaõ, 1960/1980: por uma nova metodologia. Revista Brasileira de Estadística, Río de Janeiro, ABE-IBGE, V. 33(129), 3–11.Google Scholar
  11. National Institute of Statistics and Geography (INEGI). (2015a). National census and population counts. Available at http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/default.aspx
  12. National Institute of Statistics and Geography (INEGI). (2015b). Urban geostatistical cartography. Available at http://www.inegi.org.mx/geo/contenidos/urbana/default.aspx
  13. O’Hare, W. (1976), Report on a multiple regression method for making population estimates. Demography, Maryland, 13(3), 369–379.Google Scholar
  14. Pittenger, D. B. (1976). Population forecasting. Cambridge, MA: Population Studies Division, Office of Program Planning and Fiscal Management, State of Washington, Ballinger Publishing Company.Google Scholar
  15. Gonzalez, L., & Torres, E. (2012). Capítulo 4. Estimaciones de población en áreas menores en América Latina: revisión de métodos utilizados” in Cavenaghi (org.) Estimaciones y Proyecciones de Población en América Latina, Serie e-Investigaciones No. 2, ALAP, Rio de Janeiro, Brazil.Google Scholar
  16. Swanson, D., & Tayman J. (2012). Subnational population estimates (The Springer series on demographic methods and population analysis 31). Netherlands, Springer.Google Scholar
  17. Schmitt, R. C., & Crossetti, A. H. (1954). Accuracy of the ratio-correlation method for estimating postcensal population. Land Economics, 30(3), 279–281.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Manuel Ordorica-Mellado
    • 1
    Email author
  • Víctor M. García-Guerrero
    • 1
  1. 1.Center of DemographicUrban and Environmental Studies, El Colegio de México A.C.MexicoMexico

Personalised recommendations