Skip to main content

Synthesis of Atomically Precise Graphene-Based Nanostructures: A Simulation Point of View

  • Conference paper
  • First Online:
On-Surface Synthesis

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

We illustrate how atomistic simulations can complement experimental efforts in the bottom-up synthesis of graphene-based nanostructures on noble metal surfaces. After a brief introduction to the field, we review the state of the art of relevant computational methods. We then proceed by example through questions related to adsorption and diffusion, reactions and electronic structure, indicating both the strengths and limitations of computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  3. Castro Neto, A.H., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  CAS  Google Scholar 

  4. Schwierz, F.: Graphene transistors: status, prospects, and problems. Proc. IEEE 101, 1567–1584 (2013)

    Article  CAS  Google Scholar 

  5. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  CAS  Google Scholar 

  6. Sanchez-Valencia, J.R., Dienel, T., Gröning, O., Shorubalko, I., Mueller, A., Jansen, M., Amsharov, K., Ruffieux, P., Fasel, R.: Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014)

    Article  CAS  Google Scholar 

  7. Han, M., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  CAS  Google Scholar 

  8. Wu, Z.-S., Ren, W., Gao, L., Liu, B., Zhao, J., Cheng, H.-M.: Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res. 3, 16–22 (2010)

    Article  CAS  Google Scholar 

  9. Kosynkin, D.V.D., Higginbotham, A.A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  CAS  Google Scholar 

  10. Grill, L., Dyer, M., Lafferentz, L., Persson, M., Peters, M.V., Hecht, S.: Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007)

    Article  CAS  Google Scholar 

  11. Lafferentz, L., Ample, F., Yu, H., Hecht, S., Joachim, C., Grill, L.: Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1198 (2009)

    Google Scholar 

  12. Lipton-Duffin, J.A., Ivasenko, O., Perepichka, D.F., Rosei, F.: Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009)

    Article  CAS  Google Scholar 

  13. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Müllen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  CAS  Google Scholar 

  14. Ullmann, F., Bielecki, J.: Ueber Synthesen in der Biphenylreihe. Berichte der Dtsch. Chem. Gesellschaft. 34, 2174–2185 (1901)

    Article  CAS  Google Scholar 

  15. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 155, B864 (1964)

    Article  Google Scholar 

  16. CPMD v3.17 Copyright IBM Corp 1990–2013, Copyright MPI fuer Feskoerperforschung Stuttgart 1997-2001

    Google Scholar 

  17. Hutter, J., Iannuzzi, M., Schiffmann, F., VandeVondele, J.: CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014)

    Article  CAS  Google Scholar 

  18. Artacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A, Junquera, J., Martin, R.M., Ordejón, P., Pruneda, J.M., Sánchez-Portal, D., Soler, J.M.: The SIESTA method; developments and applicability. J. Phys. Condens. Matter. 20, 064208 (2008)

    Google Scholar 

  19. Treier, M., Pignedoli, C.A., Laino, T., Rieger, R., Müllen, K., Passerone, D., Fasel, R.: Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nature Chem. 3, 61–67 (2011)

    Article  CAS  Google Scholar 

  20. Björk, J., Hanke, F.: Towards design rules for covalent nanostructures on metal surfaces. Chemistry 20, 928–934 (2014)

    Article  CAS  Google Scholar 

  21. Iannuzzi, M., Hutter, J.: Inner-shell spectroscopy by the Gaussian and augmented plane wave method. Phys. Chem. Chem. Phys. 9, 1599–1610 (2007)

    Article  CAS  Google Scholar 

  22. Ljungberg, M.P., Mortensen, J.J., Pettersson, L.G.M.: An implementation of core level spectroscopies in a real space projector augmented wave density functional theory code. J. Electron Spectros. Relat. Phenomena. 184, 427–439 (2011)

    Article  CAS  Google Scholar 

  23. Baroni, S., de Gironcoli, S.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001)

    Google Scholar 

  24. Lazzeri, M., Mauri, F.: First-principles calculation of vibrational raman spectra in large systems: signature of small rings in crystalline SiO2. Phys. Rev. Lett. 90, 036401 (2003)

    Article  CAS  Google Scholar 

  25. Venezuela, P., Lazzeri, M., Mauri, F.: Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B. 84, 035433 (2011)

    Article  CAS  Google Scholar 

  26. Warshel, A., Levitt, M.: Folding and stability of helical proteins: carp myogen. J. Mol. Biol. 106, 421–437 (1976)

    Article  CAS  Google Scholar 

  27. Senn, H.M., Thiel, W.: QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 48, 1198–1229 (2009)

    Article  CAS  Google Scholar 

  28. Foiles, S., Baskes, M., Daw, M.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pt, and their alloys. Phys. Rev. B, Pd (1986)

    Google Scholar 

  29. Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  30. Levi, A.C., Calvini, P.: Elastic theory of surface deformation in C60 adsorption. Surf. Sci. 601, 1494–1500 (2007)

    Article  CAS  Google Scholar 

  31. Pignedoli, C.A., Laino, T., Treier, M., Fasel, R., Passerone, D.: A simple approach for describing metal-supported cyclohexaphenylene dehydrogenation. Eur. Phys. J. B 75, 65–70 (2010)

    Article  CAS  Google Scholar 

  32. Laio, A., Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A. 99, 12562–12566 (2002)

    Article  CAS  Google Scholar 

  33. Laio, A., Gervasio, F.L.: Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports Prog. Phys. 71, 126601 (2008)

    Article  CAS  Google Scholar 

  34. Pietrucci, F., Andreoni, W.: Graph theory meets ab initio molecular dynamics: atomic structures and transformations at the nanoscale. Phys. Rev. Lett. 107, 085504 (2011)

    Article  CAS  Google Scholar 

  35. Tribello, G., Ceriotti, M., Parrinello, M.: Using sketch-map coordinates to analyze and bias molecular dynamics simulations. Proc. Natl. Acad. Sci. 109, 5196–5201 (2012)

    Article  CAS  Google Scholar 

  36. Rohrdanz, M.A., Zheng, W., Clementi, C.: Discovering mountain passes via torchlight: methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Annu. Rev. Phys. Chem. 64, 295–316 (2013)

    Article  CAS  Google Scholar 

  37. Rydberg, H., Dion, M., Jacobson, N., Schröder, E., Hyldgaard, P., Simak, S., Langreth, D., Lundqvist, B.I.: Van der Waals density functional for layered Structures. Phys. Rev. Lett. 91, 126402 (2003)

    Article  CAS  Google Scholar 

  38. Grimme, S.: Density functional theory with London dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1, 211–228 (2011)

    Article  CAS  Google Scholar 

  39. Zhao, Y., Truhlar, D.G.: Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 4, 1849–1868 (2008)

    Article  CAS  Google Scholar 

  40. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  CAS  Google Scholar 

  41. Tkatchenko, A., Scheffler, M.: Accurate molecular Van der Waals Interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009)

    Article  CAS  Google Scholar 

  42. Ruiz, V.G., Liu, W., Zojer, E., Scheffler, M., Tkatchenko, A.: Density-functional theory with screened Van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys. Rev. Lett. 108, 146103 (2012)

    Article  CAS  Google Scholar 

  43. Hanke, F.: Sensitivity analysis and uncertainty calculation for dispersion corrected density functional theory. J. Comput. Chem. 32, 1424–1430 (2011)

    Article  CAS  Google Scholar 

  44. Dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

    Article  CAS  Google Scholar 

  45. Lee, K., Murray, É.D., Kong, L., Lundqvist, B.I., Langreth, D.C.: Higher-accuracy Van der Waals density functional. Phys. Rev. B. 82, 081101 (2010)

    Article  CAS  Google Scholar 

  46. Hamada, I.: van der Waals density functional made accurate. Phys. Rev. B. 89, 121103 (2014)

    Article  CAS  Google Scholar 

  47. Gulans, A., Puska, M., Nieminen, R.: Linear-scaling self-consistent implementation of the Van der Waals density functional. Phys. Rev. B. 79, 201105 (2009)

    Article  CAS  Google Scholar 

  48. Björk, J., Stafström, S.: Adsorption of large hydrocarbons on coinage metals: a Van der Waals density functional study. Chem. Phys. Chem. 15, 2851–2858 (2014)

    Article  CAS  Google Scholar 

  49. Elber, R., Karplus, M.: A method for determining reaction paths in large molecules: application to myoglobin. Chem. Phys. Lett. 139, 375–380 (1987)

    Article  CAS  Google Scholar 

  50. Henkelman, G., Jónsson, H.: A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999)

    Article  CAS  Google Scholar 

  51. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  CAS  Google Scholar 

  52. Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B. 66, 052301 (2002)

    Google Scholar 

  53. Ren, W., Vanden-Eijnden, E.: Finite temperature string method for the study of rare events. J. Phys. Chem. B. 109, 6688–6693 (2005)

    Google Scholar 

  54. Branduardi, D., Gervasio, F.L., Parrinello, M.: From A to B in free energy space. J. Chem. Phys. 126, 054103 (2007)

    Article  CAS  Google Scholar 

  55. Clar, E.: The aromatic sextet. J. Wiley (1972)

    Google Scholar 

  56. Wassmann, T., Seitsonen, A.: Clar’s theory, n-electron distribution, and geometry of graphene nanoribbons. J. Am. Chem. Soc. 132, 3440–3451 (2010)

    Article  CAS  Google Scholar 

  57. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17961 (1996)

    Article  CAS  Google Scholar 

  58. Fujita, M., Wakabayashi, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Japan. 65, 1920–1923 (1996)

    Article  CAS  Google Scholar 

  59. Wakabayashi, K., Sasaki, K., Nakanishi, T., Enoki, T.: Electronic states of graphene nanoribbons and analytical solutions. Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  CAS  Google Scholar 

  60. Enoki, T., Ando, T.: Physics and Chemistry of Graphene: Graphene to Nanographene. Pan Stanford (2013)

    Google Scholar 

  61. Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  CAS  Google Scholar 

  62. Gunlycke, D., White, C.: Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys. Rev. B. 77, 115116 (2008)

    Article  CAS  Google Scholar 

  63. Girao, E., Cruz-Silva, E., Meunier, V.: Electronic transport properties of assembled carbon nanoribbons. ACS Nano 6, 6483–6491 (2012)

    Article  CAS  Google Scholar 

  64. Boykin, T.B., Luisier, M., Klimeck, G., Jiang, X., Kharche, N., Zhou, Y., Nayak, S.K.: Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons. J. Appl. Phys. 109, 104304 (2011)

    Article  CAS  Google Scholar 

  65. Yang, L., Park, C.-H., Son, Y.-W., Cohen, M., Louie, S.: Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  CAS  Google Scholar 

  66. Talirz, L., Söde, H., Cai, J., Ruffieux, P., Blankenburg, S., Jafaar, R., Berger, R., Feng, X., Müllen, K., Passerone, D., Fasel, R., Pignedoli, C.A.: Termini of bottom-up fabricated graphene nanoribbons. J. Am. Chem. Soc. 135, 2060–2063 (2013)

    Article  CAS  Google Scholar 

  67. Ijäs, M., Ervasti, M., Uppstu, A., Liljeroth, P.: Electronic states in finite graphene nanoribbons: effect of charging and defects. Phys. Rev. B. 88, 075429 (2013)

    Article  CAS  Google Scholar 

  68. Louie, S.G.: Conceptual Foundations of Materials—A Standard Model for Ground—and Excited-State Properties. Elsevier, Philadelphia (2006)

    Google Scholar 

  69. Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965)

    Article  Google Scholar 

  70. van Schilfgaarde, M., Kotani, T., Faleev, S.: Quasiparticle self-consistent GW theory. Phys. Rev. Lett. 96, 226402 (2006)

    Article  CAS  Google Scholar 

  71. Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 78, 1129–1136 (2004)

    Article  CAS  Google Scholar 

  72. Onida, G., Reining, L., Rubio, A.: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002)

    Article  CAS  Google Scholar 

  73. Salpeter, E., Bethe, H.: A relativistic equation for bound-state problems. Phys. Rev. 84, 1232 (1951)

    Article  Google Scholar 

  74. Yang, L., Cohen, M.L., Louie, S.G.: Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7, 3112–3115 (2007)

    Article  CAS  Google Scholar 

  75. Prezzi, D., Varsano, D., Ruini, A., Marini, A., Molinari, E.: Optical properties of graphene nanoribbons: the role of many-body effects. Phys. Rev. B. 77, 041404 (2008)

    Article  CAS  Google Scholar 

  76. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.: BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012)

    Article  CAS  Google Scholar 

  77. Neaton, J., Hybertsen, M., Louie, S.: Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006)

    Article  CAS  Google Scholar 

  78. Freysoldt, C., Rinke, P., Scheffler, M.: Controlling polarization at insulating surfaces: quasiparticle calculations for molecules adsorbed on insulator films. Phys. Rev. Lett. 103, 056803 (2009)

    Article  CAS  Google Scholar 

  79. Jiang, X., Kharche, N., Kohl, P., Boykin, T.B., Klimeck, G., Luisier, M., Ajayan, P.M., Nayak, S.K.: Giant quasiparticle bandgap modulation in graphene nanoribbons supported on weakly interacting surfaces. Appl. Phys. Lett. 103, 133107 (2013)

    Article  CAS  Google Scholar 

  80. Li, Y., Lu, D., Galli, G.: Calculation of quasi-particle energies of aromatic self-assembled monolayers on Au(111). J. Chem. Theory Comput. 5, 881–886 (2009)

    Article  CAS  Google Scholar 

  81. Garcia-Lastra, J.M., Thygesen, K.S.: Renormalization of optical excitations in molecules near a metal surface. Phys. Rev. Lett. 106, 187402 (2011)

    Article  CAS  Google Scholar 

  82. Ruffieux, P., Cai, J., Plumb, N.N.C., Patthey, L., Prezzi, D., Ferretti, A., Molinari, E., Feng, X., Müllen, K., Pignedoli, C.A., Fasel, R.: Electronic structure of atomically precise graphene nanoribbons. ACS Nano 6, 6930–6935 (2012)

    Article  CAS  Google Scholar 

  83. Whitelam, S., Tamblyn, I., Haxton, T.K., Wieland, M.B., Champness, N.R., Garrahan, J.P., Beton, P.H.: Common physical framework explains phase behavior and dynamics of atomic, molecular, and polymeric network formers. Phys. Rev. X. 4, 011044 (2014)

    Google Scholar 

  84. He, Y., Chen, Y., Liu, H.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005)

    Article  CAS  Google Scholar 

  85. Lichtenstein, L., Heyde, M., Freund, H.-J.: Crystalline-vitreous interface in two dimensional silica. Phys. Rev. Lett. 109, 106101 (2012)

    Article  CAS  Google Scholar 

  86. Bieri, M., Treier, M., Cai, J., Aït-Mansour, K., Ruffieux, P., Gröning, O., Gröning, P., Kastler, M., Rieger, R., Feng, X., Müllen, K., Fasel, R.: Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. (Camb). 45, 6919–6921 (2009)

    Google Scholar 

  87. Palma, C.-A., Samorì, P., Cecchini, M.: Atomistic simulations of 2D bicomponent self-assembly: from molecular recognition to self-healing. J. Am. Chem. Soc. 132, 17880–17885 (2010)

    Article  CAS  Google Scholar 

  88. Blunt, M.O., Russell, J.C., Champness, N.R., Beton, P.H.: Templating molecular adsorption using a covalent organic framework. Chem. Commun. (Camb.) 46, 7157–7159 (2010)

    Article  CAS  Google Scholar 

  89. Linden, S., Zhong, D., Timmer, A., Aghdassi, N., Franke, J., Zhang, H., Feng, X., Müllen, K., Fuchs, H., Chi, L., Zacharias, H.: Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012)

    Article  CAS  Google Scholar 

  90. Batra, A., Cvetko, D., Kladnik, G., Adak, O., Cardoso, C., Ferretti, A., Prezzi, D., Molinari, E., Morgante, A., Venkataraman, L.: Probing the mechanism for graphene nanoribbon formation on gold surfaces through X-ray spectroscopy. Chem. Sci. 5, 4419–4423 (2014)

    Article  CAS  Google Scholar 

  91. Pham, T.A., Song, F., Nguyen, M.-T., Stöhr, M.: Self-assembly of pyrene derivatives on Au(111): substituent effects on intermolecular interactions. Chem. Commun. 50, 14089 (2014)

    Article  CAS  Google Scholar 

  92. Bieri, M., Nguyen, M.-T., Gröning, O., Cai, J., Treier, M., Aït-Mansour, K., Ruffieux, P., Pignedoli, C.A., Passerone, D., Kastler, M., Müllen, K., Fasel, R., Gröning, O.: Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010)

    Article  CAS  Google Scholar 

  93. Bronner, C., Stremlau, S., Gille, M., Brauße, F., Haase, A., Hecht, S., Tegeder, P.: Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. Engl. 52, 4422–4425 (2013)

    Article  CAS  Google Scholar 

  94. Cai, J., Pignedoli, C.A., Talirz, L., Ruffieux, P., Söde, H., Liang, L., Meunier, V., Berger, R., Li, R., Feng, X., Müllen, K., Fasel, R.: Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014)

    Article  CAS  Google Scholar 

  95. Kanuru, V.K., Kyriakou, G., Beaumont, S.K., Papageorgiou, A.C., Watson, D.J., Lambert, R.M.: Sonogashira coupling on an extended gold surface in vacuo: reaction of phenylacetylene with iodobenzene on Au(111). J. Am. Chem. Soc. 132, 8081–8086 (2010)

    Article  CAS  Google Scholar 

  96. Sykes, E.C.H., Han, P., Kandel, S.A., Kelly, K.F., McCarty, G.S., Weiss, P.S.: Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces. Acc. Chem. Res. 36, 945–953 (2003)

    Article  CAS  Google Scholar 

  97. Nguyen, M.-T., Pignedoli, C.A., Passerone, D.: An ab initio insight into the Cu(111)-mediated Ullmann reaction. Phys. Chem. Chem. Phys. 13, 154–160 (2011)

    Article  CAS  Google Scholar 

  98. Gutzler, R., Cardenas, L., Lipton-Duffin, J., El Garah, M., Dinca, L.E., Szakacs, C.E., Fu, C., Gallagher, M., Vondráček, M., Rybachuk, M., Perepichka, D.F., Rosei, F.: Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver. Nanoscale. 6, 2660–2668 (2014)

    Article  CAS  Google Scholar 

  99. Simonov, K., Vinogradov, N.A., Vinogradov, A.S., Generalov, A.V., Zagrebina, E.M., Martenson, N., Cafolla, A.A., Carpy, T., Cunniffe, J.P., Preobrajenski, A.B.: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: combined core-level spectroscopy and STM study. J. Phys. Chem. C 118, 12532–12540 (2014)

    Article  CAS  Google Scholar 

  100. Eichhorn, J., Strunskus, T., Rastgoo-Lahrood, A., Samanta, D., Schmittel, M., Lackinger, M.: On-surface Ullmann polymerization via intermediate organometallic networks on Ag (111). Chem. Comm. 50, 7680–7682 (2014)

    Google Scholar 

  101. Bronner, C., Björk, J., Tegeder, P.: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon. J. Phys. Chem. C 119, 486–493 (2015). doi:10.1021/jp5106218

    Google Scholar 

  102. Björk, J., Hanke, F., Stafström, S.: Mechanisms of halogen-based covalent self-assembly on metal surfaces. J. Am. Chem. Soc. 135, 5768–5775 (2013)

    Article  CAS  Google Scholar 

  103. Weiss, K., Beernink, G., Dötz, F., Birkner, A., Müllen, K., Wöll, C.H.: Template-mediated synthesis of polycyclic aromatic hydrocarbons: cyclodehydrogenation and planarization of a hexaphenylbenzene derivative at a copper surface. Angew. Chem. Int. Ed. Engl. 38, 3748–3752 (1999)

    Article  CAS  Google Scholar 

  104. Björk, J., Stafström, S., Hanke, F.: Zipping up: cooperativity drives the synthesis of graphene nanoribbons. J. Am. Chem. Soc. 133, 14884–14887 (2011)

    Article  CAS  Google Scholar 

  105. Blankenburg, S., Cai, J., Ruffieux, P., Jaafar, R., Passerone, D., Feng, X., Fasel, R., Müllen, K., Pignedoli, C.A.: Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012)

    Article  CAS  Google Scholar 

  106. Prezzi, D., Varsano, D., Ruini, A., Molinari, E.: Quantum dot states and optical excitations of edge-modulated graphene nanoribbons. Phys. Rev. B. 84, 041401 (2011)

    Article  CAS  Google Scholar 

  107. Yazyev, O.V., Capaz, R.B., Louie, S.G.: Theory of magnetic edge states in chiral graphene nanoribbons. Phys. Rev. B. 84, 115406 (2011)

    Article  CAS  Google Scholar 

  108. Wang, W., Yazyev, O., Meng, S., Kaxiras, E.: Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009)

    Article  CAS  Google Scholar 

  109. Adams, D.J., Gröning, O., Pignedoli, C.A., Ruffieux, P., Fasel, R., Passerone, D.: Stable ferromagnetism and doping-induced half-metallicity in asymmetric graphene nanoribbons. Phys. Rev. B. 85, 245405 (2012)

    Article  CAS  Google Scholar 

  110. Rajca, A., Wongsriratanakul, J., Rajca, S.: Magnetic ordering in an organic polymer. Science (80-.). 294, 1503–1505 (2001)

    Google Scholar 

  111. Wang, W.L., Meng, S., Kaxiras, E.: Graphene nanoflakes with large spin. Nano Lett. 8, 241–245 (2008)

    Article  CAS  Google Scholar 

  112. Wakabayashi, K., Okada, S., Tomita, R., Fujimoto, S., Natsume, Y.: Edge States and flat bands of graphene nanoribbons with edge modification. J. Phys. Soc. Japan. 79, 034706 (2010)

    Article  CAS  Google Scholar 

  113. Perdew, J., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  114. Li, Y., Zhang, W., Morgenstern, M., Mazzarello, R.: Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au. Phys. Rev. Lett. 110, 216804 (2013)

    Article  CAS  Google Scholar 

  115. Ke, S.-H., Baranger, H.U., Yang, W.: Role of the exchange-correlation potential in ab initio electron transport calculations. J. Chem. Phys. 126, 201102 (2007)

    Article  CAS  Google Scholar 

  116. Cohen, A.J., Mori-Sánchez, P., Yang, W.: Insights into current limitations of density functional theory. Science 321, 792–794 (2008)

    Article  CAS  Google Scholar 

  117. Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Phys. Rev. B. 31, 805–813 (1985)

    Article  CAS  Google Scholar 

  118. Tersoff, J.: Method for the calculation of scanning tunneling microscope images and spectra. Phys. Rev. B. 40, 11990–11993 (1989)

    Article  CAS  Google Scholar 

  119. Gross, L., Moll, N., Mohn, F., Curioni, A., Meyer, G., Hanke, F., Persson, M.: High-resolution molecular orbital imaging using a p-Wave STM tip. Phys. Rev. Lett. 107, 086101 (2011)

    Article  CAS  Google Scholar 

  120. Chen, C.: Tunneling matrix elements in three-dimensional space: the derivative rule and the sum rule. Phys. Rev. B. 42, 8841 (1990)

    Article  CAS  Google Scholar 

  121. Gaspari, R., Blankenburg, S., Pignedoli, C.A., Ruffieux, P., Treier, M., Fasel, R., Passerone, D.: S-orbital continuum model accounting for the tip shape in simulated scanning tunneling microscope images. Phys. Rev. B. 84, 125417 (2011)

    Article  CAS  Google Scholar 

  122. Blanco, J., González, C., Jelínek, P., Ortega, J., Flores, F., Pérez, R.: First-principles simulations of STM images: from tunneling to the contact regime. Phys. Rev. B. 70, 085405 (2004)

    Article  CAS  Google Scholar 

  123. Lewis, J.P., Jelínek, P., Ortega, J., Demkov, A.A., Trabada, D.G., Haycock, B., Wang, H., Adams, G., Tomfohr, J.K., Abad, E., Wang, H., Drabold, D.A.: Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism. Phys. Status Solidi B 248, 1989–2007 (2011)

    CAS  Google Scholar 

  124. Thygesen, K., Rubio, A.: Renormalization of molecular quasiparticle levels at metal-molecule interfaces: trends across binding regimes. Phys. Rev. Lett. 102, 046802 (2009)

    Article  CAS  Google Scholar 

  125. Denk, R., Hohage, M., Zeppenfeld, P., Cai, J., Pignedoli, C.A., Söde, H., Fasel, R., Feng, X., Müllen, K., Wang, S., Prezzi, D., Ferretti, A., Ruini, A., Molinari, E., Ruffieux, P.: Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Nat. Commun. 5, 4253 (2014)

    Article  CAS  Google Scholar 

  126. Weightman, P., Martin, D.S., Cole, R.J., Farrell, T.: Reflection anisotropy spectroscopy. reports. Prog. Phys. 68, 1251–1341 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Swiss National Science Foundation (SNF) for funding and the Swiss Supercomputing Centre (CSCS) for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Pignedoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Talirz, L., Shinde, P., Passerone, D., Pignedoli, C.A. (2016). Synthesis of Atomically Precise Graphene-Based Nanostructures: A Simulation Point of View. In: Gourdon, A. (eds) On-Surface Synthesis. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-26600-8_12

Download citation

Publish with us

Policies and ethics