Skip to main content

Thyroid Hormone and the Mammalian Auditory System

  • Chapter
  • First Online:
Hearing and Hormones

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 57))

Abstract

Thyroid hormone serves a key role in the development of the mammalian auditory system. Certain thyroid disorders in humans, such as those arising from iodine deficiency or mutations in the thyroid hormone receptor β (THRB) gene, are associated with hearing loss. Genetic analyses in rodent models of thyroid hormone receptors and other factors that mediate the tissue response to thyroid hormone have yielded insights into the underlying cellular mechanisms of action. The cochlea is a major site of action of thyroid hormone during later phases of development when cell types acquire their final form and the physiological properties that allow the onset of hearing. Other sites of action include the middle ear and central auditory pathways. Thyroid hormone coordinates tissue remodeling and late stage differentiation of diverse cell types as the auditory system attains functional status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, S., Katagiri, T., Saito-Hisaminato, A., Usami, S., Inoue, Y., Tsunoda, T., et al. (2003). Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. American Journal of Human Genetics, 72(1), 73–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abel, E. D., Boers, M. E., Pazos-Moura, C., Moura, E., Kaulbach, H., Zakaria, M., et al. (1999). Divergent roles for thyroid hormone receptor β isoforms in the endocrine axis and auditory system. Journal of Clinical Investigation, 104(3), 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astapova, I., & Hollenberg, A. N. (2013). The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochimica et Biophysica Acta, 1830(7), 3876–3881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelsson, A. (1988). Comparative anatomy of cochlear blood vessels. American Journal of Otolaryngology, 9(6), 278–290.

    Article  CAS  PubMed  Google Scholar 

  • Bassi, M. T., Ramesar, R. S., Caciotti, B., Winship, I. M., De Grandi, A., Riboni, M., et al. (1999). X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. American Journal of Human Genetics, 64(6), 1604–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellman, S. C., Davies, A., Fuggle, P. W., Grant, D. B., & Smith, I. (1996). Mild impairment of neuro-otological function in early treated congenital hypothyroidism. Archives of Disease in Childhood, 74(3), 215–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., & Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews, 23(1), 38–89.

    Article  CAS  PubMed  Google Scholar 

  • Bizhanova, A., & Kopp, P. (2010). Genetics and phenomics of Pendred syndrome. Molecular and Cellular Endocrinology, 322(1–2), 83–90.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, D. J., Towle, H. C., & Young, W. S., 3rd. (1992). Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. Journal of Neuroscience, 12(6), 2288–2302.

    CAS  PubMed  Google Scholar 

  • Bradley, D. J., Towle, H. C., & Young, W. S., 3rd. (1994). α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: Evidence for TR isoform-specific transcriptional regulation in vivo. Proceedings of the National Academy of Sciences of the USA, 91(2), 439–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brent, G. A. (2012). The debate over thyroid-function screening in pregnancy. New England Journal of Medicine, 366(6), 562–563.

    Article  CAS  PubMed  Google Scholar 

  • Brucker-Davis, F., Skarulis, M. C., Pikus, A., Ishizawar, D., Mastroianni, M. A., Koby, M., et al. (1996). Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. Journal of Clinical Endocrinology & Metabolism, 81(8), 2768–2772.

    CAS  Google Scholar 

  • Bruno, R., Aversa, T., Catena, M., Valenzise, M., Lombardo, F., De Luca, F., et al. (2015). Even in the era of congenital hypothyroidism screening mild and subclinical sensorineural hearing loss remains a relatively common complication of severe congenital hypothyroidism. Hearing Research, 327, 43–47.

    Article  PubMed  Google Scholar 

  • Campos-Barros, A., Amma, L. L., Faris, J. S., Shailam, R., Kelley, M. W., & Forrest, D. (2000). Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing. Proceedings of the National Academy of Sciences of the USA, 97(3), 1287–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantos, R., Lopez, D. E., Merchan, J. A., & Rueda, J. (2003). Olivocochlear efferent innervation of the organ of corti in hypothyroid rats. Journal of Comparative Neurology, 459(4), 454–467.

    Article  PubMed  Google Scholar 

  • Cao, X. Y., Jiang, X. M., Dou, Z. H., Rakeman, M. A., Zhang, M. L., O’Donnell, K., et al. (1994). Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. New England Journal of Medicine, 331(26), 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  • Christ, S., Biebel, U. W., Hoidis, S., Friedrichsen, S., Bauer, K., & Smolders, J. W. (2004). Hearing loss in athyroid Pax8 knockout mice and effects of thyroxine substitution. Audiology and Neurotology, 9(2), 88–106.

    Article  CAS  PubMed  Google Scholar 

  • Cordas, E. A., Ng, L., Hernandez, A., Kaneshige, M., Cheng, S. Y., & Forrest, D. (2012). Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology, 153(3), 1548–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofton, K. M. (2004). Developmental disruption of thyroid hormone: Correlations with hearing dysfunction in rats. Risk Analysis, 24(6), 1665–1671.

    Article  CAS  PubMed  Google Scholar 

  • Crofton, K. M., Ding, D., Padich, R., Taylor, M., & Henderson, D. (2000). Hearing loss following exposure during development to polychlorinated biphenyls: A cochlear site of action. Hearing Research, 144(1–2), 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Dayaratne, M. W., Vlajkovic, S. M., Lipski, J., & Thorne, P. R. (2014). Kölliker’s organ and the development of spontaneous activity in the auditory system: Implications for hearing dysfunction. Biomed Research International, 2014, 367939. doi:10.1155/2014/367939.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLong, G. R., Stanbury, J. B., & Fierro-Benitez, R. (1985). Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Developmental Medicine & Child Neurology, 27(3), 317–324.

    Article  CAS  Google Scholar 

  • Deol, M. S. (1973). An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. Journal of Medical Genetics, 10, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deol, M. S. (1976). The role of thyroxine in the differentiation of the organ of Corti. Acta Oto-Laryngologica, 81, 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Dettling, J., Franz, C., Zimmermann, U., Lee, S. C., Bress, A., Brandt, N., et al. (2014). Autonomous functions of murine thyroid hormone receptor TRalpha and TRbeta in cochlear hair cells. Molecular and Cellular Endocrinology, 382(1), 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Dow-Edwards, D., Crane, A. M., Rosloff, B., Kennedy, C., & Sokoloff, L. (1986). Local cerebral glucose utilization in the adult cretinous rat. Brain Research, 373(1–2), 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Dror, A. A., Lenz, D. R., Shivatzki, S., Cohen, K., Ashur-Fabian, O., & Avraham, K. B. (2014). Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mammalian Genome, 25(7–8), 304–316.

    Article  CAS  PubMed  Google Scholar 

  • Dumitrescu, A. M., & Refetoff, S. (2013). The syndromes of reduced sensitivity to thyroid hormone. Biochimica et Biophysica Acta, 1830(7), 3987–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitrescu, A. M., Liao, X. H., Best, T. B., Brockmann, K., & Refetoff, S. (2004). A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. American Journal of Human Genetics, 74(1), 168–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Q., Giordimaina, A. M., Dolan, D. F., Camper, S. A., & Mustapha, M. (2012). Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment. Journal of the Association for Research in Otolaryngology, 13(2), 173–184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrara, A. M., Onigata, K., Ercan, O., Woodhead, H., Weiss, R. E., & Refetoff, S. (2012). Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: Three new cases and review of the literature. Journal of Clinical Endocrinology & Metabolism, 97(4), 1328–1336.

    Article  CAS  Google Scholar 

  • Foley, T. P., Jr. (2000). Congenital hypothyroidism. In L. E. Braverman & R. D. Utiger (Eds.), Werner & Ingbar’s the thyroid (8th ed., pp. 977–983). Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Forhead, A. J., & Fowden, A. L. (2014). Thyroid hormones in fetal growth and prepartum maturation. Journal of Endocrinology, 221(3), R87–R103.

    Article  CAS  PubMed  Google Scholar 

  • Forrest, D., & Vennström, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid, 10(1), 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Francois, M., Bonfils, P., Leger, J., Czernichow, P., & Narcy, P. (1994). Role of congenital hypothyroidism in hearing loss in children. Journal of Pediatrics, 124(3), 444–446.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, S., Cherny, L., & Sohmer, H. (1996). Thyroxine affects physiological and morphological development of the ear. Hearing Research, 97(1–2), 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Friauf, E., Wenz, M., Oberhofer, M., Nothwang, H. G., Balakrishnan, V., Knipper, M., et al. (2008). Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons. European Journal of Neuroscience, 28(12), 2371–2380.

    Article  PubMed  Google Scholar 

  • Friesema, E. C., Grueters, A., Biebermann, H., Krude, H., von Moers, A., Reeser, M., et al. (2004). Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet, 364(9443), 1435–1437.

    Article  CAS  PubMed  Google Scholar 

  • Gabrion, J., Legrand, C., Mercier, B., Harricane, M. C., & Uziel, A. (1984). Microtubules in the cochlea of the hypothyroid developing rat. Hearing Research, 13(3), 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Goldey, E. S., & Crofton, K. M. (1998). Thyroxine replacement attenuates hypothyroxinemia, hearing loss, and motor deficits following developmental exposure to Aroclor 1254 in rats. Toxicological Sciences, 45(1), 94–105.

    CAS  PubMed  Google Scholar 

  • Goslings, B. M., Djokomoeljanto, R., Hoedijono, R., Soepardjo, H., & Querido, A. (1975). Studies on hearing loss in a community with endemic cretinism in Central Java, Indonesia. Acta Endocrinologica, 78(4), 705–713.

    CAS  PubMed  Google Scholar 

  • Griffith, A. J., Szymko, Y. M., Kaneshige, M., Quinonez, R. E., Kaneshige, K., Heintz, K. A., et al. (2002). Knock-in mouse model for resistance to thyroid hormone (RTH): An RTH mutation in the thyroid hormone receptor β gene disrupts cochlear morphogenesis. Journal of the Association for Research in Otolaryngology, 3(3), 279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith, A. J., & Wangemann, P. (2011). Hearing loss associated with enlargement of the vestibular aqueduct: Mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hearing Research, 281(1–2), 11–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimaldi, A., Buisine, N., Miller, T., Shi, Y. B., & Sachs, L. M. (2013). Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. Biochimica et Biophysica Acta, 1830(7), 3882–3892.

    Article  CAS  PubMed  Google Scholar 

  • Guadano-Ferraz, A., Escamez, M. J., Rausell, E., & Bernal, J. (1999). Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. Journal of Neuroscience, 19(9), 3430–3439.

    CAS  PubMed  Google Scholar 

  • Guadano-Ferraz, A., Obregon, M. J., St Germain, D. L., & Bernal, J. (1997). The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proceedings of the National Academy of Sciences of the USA, 94(19), 10391–10396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther, M. G., Lane, W. S., Fischle, W., Verdin, E., Lazar, M. A., & Shiekhattar, R. (2000). A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes & Development, 14(9), 1048–1057.

    CAS  Google Scholar 

  • Haddow, J. E., Palomaki, G. E., Allan, W. C., Williams, J. R., Knight, G. J., Gagnon, J., et al. (1999). Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. New England Journal of Medicine, 341(8), 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, H., & Visser, T. J. (2013). The pathophysiological consequences of thyroid hormone transporter deficiencies: Insights from mouse models. Biochimica et Biophysica Acta, 1830(7), 3974–3978.

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa, R. (1977). A note on development of Corti’s organ. Acta Oto-Laryngologica, 84(3–4), 238–251.

    Article  CAS  PubMed  Google Scholar 

  • Huangfu, M., & Saunders, J. C. (1983). Auditory development in the mouse: Structural maturation of the middle ear. Journal of Morphology, 176(3), 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, Y., Esaki, T., Kaneshige, M., Suzuki, H., Cook, M., Sokoloff, L., et al. (2001). Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proceedings of the National Academy of Sciences of the USA, 98(17), 9913–9918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. R., Gagnon, L. H., Longo-Guess, C. M., Harris, B. S., & Chang, B. (2014). Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. Journal of the Association for Research in Otolaryngology, 15(1), 45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, K. R., Marden, C. C., Ward-Bailey, P., Gagnon, L. H., Bronson, R. T., & Donahue, L. R. (2007). Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Molecular Endocrinology, 21(7), 1593–1602.

    Article  CAS  PubMed  Google Scholar 

  • Knipper, M., Bandtlow, C., Gestwa, L., Kopschall, I., Rohbock, K., Wiechers, B., et al. (1998). Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development, 125(18), 3709–3718.

    CAS  PubMed  Google Scholar 

  • Knipper, M., Richardson, G., Mack, A., Muller, M., Goodyear, R., Limberger, A., et al. (2001). Thyroid hormone-deficient period prior to the onset of hearing is associated with reduced levels of β-tectorin protein in the tectorial membrane: Implication for hearing loss. Journal of Biological Chemistry, 276(42), 39046–39052.

    Article  CAS  PubMed  Google Scholar 

  • Knipper, M., Zinn, C., Maier, H., Praetorius, M., Rohbock, K., Kopschall, I., et al. (2000). Thyroid hormone deficiency before the onset of hearing causes irreversible damage to peripheral and central auditory systems. Journal of Neurophysiology, 83(5), 3101–3112.

    CAS  PubMed  Google Scholar 

  • Kopp, P. (2002). Perspective: Genetic defects in the etiology of congenital hypothyroidism. Endocrinology, 143(6), 2019–2024.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Henley, C. M., & O’Malley, B. W., Jr. (1999). Distortion product otoacoustic emissions and outer hair cell defects in the hyt/hyt mutant mouse. Hearing Research, 138(1–2), 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberger-Geslin, L., Dos Santos, S., Hassani, Y., Ecosse, E., Van Den Abbeele, T., & Leger, J. (2013). Factors associated with hearing impairment in patients with congenital hypothyroidism treated since the neonatal period: A national population-based study. Journal of Clinical Endocrinology & Metabolism, 98(9), 3644–3652.

    Article  CAS  Google Scholar 

  • Lukashkin, A. N., Richardson, G. P., & Russell, I. J. (2010). Multiple roles for the tectorial membrane in the active cochlea. Hearing Research, 266(1–2), 26–35.

    Article  PubMed  Google Scholar 

  • Mallo, M. (2003). Formation of the outer and middle ear, molecular mechanisms. Current Topics in Developmental Biology, 57, 85–113.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., et al. (1995). The nuclear receptor superfamily: The second decade. Cell, 83(6), 835–839.

    Article  CAS  PubMed  Google Scholar 

  • Marovitz, W. F., Berryhill, B. H., & Peterson, R. R. (1968). Disruptions of bony labyrinth, ossicular chain and tympanic bullae in dwarf mice. Laryngoscope, 78(5), 863–872.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. K., & Linthicum, F. H., Jr. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460–478.

    Article  PubMed  Google Scholar 

  • Morishita, H., Makishima, T., Kaneko, C., Lee, Y. S., Segil, N., Takahashi, K., et al. (2001). Deafness due to degeneration of cochlear neurons in caspase-3-deficient mice. Biochemical and Biophysical Research Communications, 284(1), 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Mustapha, M., Fang, Q., Gong, T. W., Dolan, D. F., Raphael, Y., Camper, S. A., et al. (2009). Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. Journal of Neuroscience, 29(4), 1212–1223.

    Article  CAS  PubMed  Google Scholar 

  • Ng, L., Cordas, E. A., Wu, X., Vella, K. R., Hollenberg, A. N., & Forrest, D. (2015). Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor β1. Endocrinology, 156(10), 3853–3865.

    Article  CAS  PubMed  Google Scholar 

  • Ng, L., Goodyear, R. J., Woods, C. A., Schneider, M. J., Diamond, E., Richardson, G. P., et al. (2004). Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proceedings of the National Academy of Sciences of the USA, 101(10), 3474–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, L., Hernandez, A., He, W., Ren, T., Srinivas, M., Ma, M., et al. (2009). A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology, 150(4), 1952–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, L., Rusch, A., Amma, L. L., Nordstrom, K., Erway, L. C., Vennstrom, B., et al. (2001). Suppression of the deafness and thyroid dysfunction in Thrb-null mice by an independent mutation in the Thra thyroid hormone receptor alpha gene. Human Molecular Genetics, 10(23), 2701–2708.

    Article  CAS  PubMed  Google Scholar 

  • Obregon, M. J., Calvo, R. M., Del Rey, F. E., & de Escobar, G. M. (2007). Ontogenesis of thyroid function and interactions with maternal function. Endocrine Development, 10, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller, K. K., McFadden, S. L., Ding, D. L., Lear, P. M., & Ho, Y. S. (2000). Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. Journal of the Association for Research in Otolaryngology, 1(3), 243–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshima, A., Suzuki, S., Takumi, Y., Hashizume, K., Abe, S., & Usami, S. (2006). CRYM mutations cause deafness through thyroid hormone binding properties in the fibrocytes of the cochlea. Journal of Medical Genetics, 43(6), e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters, R. P., Ng, L., Ma, M., & Forrest, D. (2015). The timecourse of apoptotic cell death during postnatal remodeling of the mouse cochlea and its premature onset by triiodothyronine (T3). Molecular and Cellular Endocrinology, 407, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Pendred, V. (1896). Deaf-mutism and goitre. Lancet, 2(3808), 532. http://www.sciencedirect.com/science/article/pii/S0140673601744030.

    Article  Google Scholar 

  • Phan, T. Q., Jow, M. M., & Privalsky, M. L. (2010). DNA recognition by thyroid hormone and retinoic acid receptors: 3,4,5 rule modified. Molecular and Cellular Endocrinology, 319(1–2), 88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, S. A., Rotman-Pikielny, P., Lazar, J., Ando, S., Hauser, P., Skarulis, M. C., et al. (2001). Extreme thyroid hormone resistance in a patient with a novel truncated TR mutant. Journal of Clinical Endocrinology & Metabolism, 86(11), 5142–5147.

    Article  CAS  Google Scholar 

  • Rajatanavin, R., Chailurkit, L., Winichakoon, P., Mahachoklertwattana, P., Soranasataporn, S., Wacharasin, R., et al. (1997). Endemic cretinism in Thailand: A multidisciplinary survey. European Journal of Endocrinology, 137(4), 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Refetoff, S., DeWind, L. T., & DeGroot, L. J. (1967). Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormally high PBI: Possible target organ refractoriness to thyroid hormone. Journal of Clinical Endocrinology & Metabolism, 27(2), 279–294.

    Article  CAS  Google Scholar 

  • Rovet, J., Walker, W., Bliss, B., Buchanan, L., & Ehrlich, R. (1996). Long-term sequelae of hearing impairment in congenital hypothyroidism. Journal of Pediatrics, 128(6), 776–783.

    Article  CAS  PubMed  Google Scholar 

  • Rübsamen, R., & Lippe, W. R. (1997). The development of cochlear function. In E. W. Rubel, A. N. Popper, & R. R. Fay (Eds.), Development of the auditory system (pp. 193–270). New York: Springer.

    Google Scholar 

  • Ruiz-Marcos, A., Salas, J., Sanchez-Toscano, F., Escobar Del Rey, F., & Morreale de Escobar, G. (1983). Effect of neonatal and adult-onset hypothyroidism on pyramidal cells of the rat auditory cortex. Developmental Brain Research, 9, 205–213.

    Article  Google Scholar 

  • Rüsch, A., Ng, L., Goodyear, R., Oliver, D., Lisoukov, I., Vennstrom, B., et al. (2001). Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. Journal of Neuroscience, 21(24), 9792–9800.

    PubMed  Google Scholar 

  • Schoenmakers, E., Agostini, M., Mitchell, C., Schoenmakers, N., Papp, L., Rajanayagam, O., et al. (2010). Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. Journal of Clinical Investigation, 120(12), 4220–4235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenmakers, N., Moran, C., Peeters, R. P., Visser, T., Gurnell, M., & Chatterjee, K. (2013). Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochimica et Biophysica Acta, 1830(7), 4004–4008.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer, U., & Kohrle, J. (2013). Function of thyroid hormone transporters in the central nervous system. Biochimica et Biophysica Acta, 1830(7), 3965–3973.

    Article  CAS  PubMed  Google Scholar 

  • Sendin, G., Bulankina, A. V., Riedel, D., & Moser, T. (2007). Maturation of ribbon synapses in hair cells is driven by thyroid hormone. Journal of Neuroscience, 27(12), 3163–3173.

    Article  CAS  PubMed  Google Scholar 

  • Sharlin, D. S., Visser, T. J., & Forrest, D. (2011). Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. Endocrinology, 152(12), 5053–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y. B. (2013). Unliganded thyroid hormone receptor regulates metamorphic timing via the recruitment of histone deacetylase complexes. Current Topics in Developmental Biology, 105, 275–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohmer, H., & Freeman, S. (1995). Functional development of auditory sensitivity in the fetus and neonate. Journal of Basic and Clinical Physiology and Pharmacology, 6(2), 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Soriguer, F., Millon, M. C., Munoz, R., Mancha, I., Lopez Siguero, J. P., Martinez Aedo, M. J., et al. (2000). The auditory threshold in a school-age population is related to iodine intake and thyroid function. Thyroid, 10(11), 991–999.

    Article  CAS  PubMed  Google Scholar 

  • Sprenkle, P. M., McGee, J., Bertoni, J. M., & Walsh, E. J. (2001a). Development of auditory brainstem responses (ABRs) in Tshr mutant mice derived from euthyroid and hypothyroid dams. Journal of the Association for Research in Otolaryngology, 2(4), 330–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenkle, P. M., McGee, J., Bertoni, J. M., & Walsh, E. J. (2001b). Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice. Journal of the Association for Research in Otolaryngology, 2(4), 312–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Germain, D. L., Galton, V. A., & Hernandez, A. (2009). Minireview: Defining the roles of the iodothyronine deiodinases: Current concepts and challenges. Endocrinology, 150(3), 1097–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, S., Suzuki, N., Mori, J., Oshima, A., Usami, S., & Hashizume, K. (2007). Micro-crystallin as an intracellular 3,5,3′-triiodothyronine holder in vivo. Molecular Endocrinology, 21(4), 885–894.

    Article  CAS  PubMed  Google Scholar 

  • Szarama, K. B., Gavara, N., Petralia, R. S., Chadwick, R. S., & Kelley, M. W. (2013). Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of Corti. BMC Developmental Biology, 13(1), 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K., Kamiya, K., Urase, K., Suga, M., Takizawa, T., Mori, H., et al. (2001). Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Research, 894(2), 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Uziel, A. (1986). Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Oto-Laryngologica, 101(Suppl 429), 23–27.

    Article  Google Scholar 

  • Uziel, A., Legrand, C., & Rabie, A. (1985a). Corrective effects of thyroxine on cochlear abnormalities induced by congenital hypothyroidism in the rat. I. Morphological study. Developmental Brain Research, 19(1), 111–122.

    Google Scholar 

  • Uziel, A., Marot, M., & Rabie, A. (1985b). Corrective effects of thyroxine on cochlear abnormalities induced by congenital hypothyroidism in the rat. II. Electrophysiological study. Developmental Brain Research, 19(1), 123–127.

    Google Scholar 

  • Uziel, A., Pujol, R., Legrand, C., & Legrand, J. (1983). Cochlear synaptogenesis in the hypothyroid rat. Developmental Brain Research, 7(2–3), 295–301.

    Article  Google Scholar 

  • Van Eyken, E., Van Camp, G., & Van Laer, L. (2007). The complexity of age-related hearing impairment: Contributing environmental and genetic factors. Audiology & Neurotology, 12(6), 345–358.

    Article  Google Scholar 

  • Vanderschueren-Lodeweyckx, M., Debruyne, F., Dooms, L., Eggermont, E., & Eeckels, R. (1983). Sensorineural hearing loss in sporadic congenital hypothyroidism. Archives of Disease in Childhood, 58(6), 419–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. Y., & Yang, S. H. (1985). Improvement in hearing among otherwise normal schoolchildren in iodine-deficient areas of Guizhou, China, following use of iodized salt. Lancet, 2(8454), 518–520.

    CAS  PubMed  Google Scholar 

  • Wangemann, P., Kim, H. M., Billings, S., Nakaya, K., Li, X., Singh, R., et al. (2009). Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. American Journal of Physiology: Renal Physiology, 297(5), F1435–F1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasniewska, M., De Luca, F., Siclari, S., Salzano, G., Messina, M. F., Lombardo, F., et al. (2002). Hearing loss in congenital hypothalamic hypothyroidism: A wide therapeutic window. Hearing Research, 172(1-2), 87–91.

    Article  PubMed  Google Scholar 

  • Wasserman, E. E., Nelson, K., Rose, N. R., Eaton, W., Pillion, J. P., Seaberg, E., et al. (2008). Maternal thyroid autoantibodies during the third trimester and hearing deficits in children: An epidemiologic assessment. American Journal of Epidemiology, 167(6), 701–710.

    Article  PubMed  Google Scholar 

  • Werner, L. A., & Gray, L. (1997). Behavioral studies of hearing and development. In E. W. Rubel, A. N. Popper, & R. R. Fay (Eds.), Development of the auditory system (pp. 12–79). New York: Springer.

    Google Scholar 

  • Winter, H., Ruttiger, L., Muller, M., Kuhn, S., Brandt, N., Zimmermann, U., et al. (2009). Deafness in TRbeta mutants is caused by malformation of the tectorial membrane. Journal of Neuroscience, 29(8), 2581–2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D. K., & Kelley, M. W. (2012). Molecular mechanisms of inner ear development. Cold Spring Harbor Perspectives in Biology, 4(8), a008409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuda, T., Ohnishi, H., Wataki, K., Minagawa, M., Minamitani, K., & Niimi, H. (1999). Outcome of a baby born from a mother with acquired juvenile hypothyroidism having undetectable thyroid hormone concentrations. Journal of Clinical Endocrinology & Metabolism, 84(8), 2630–2632.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural research program at the National Institute of Diabetes and Digestive and Kidney Disorders at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Forrest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forrest, D., Ng, L. (2016). Thyroid Hormone and the Mammalian Auditory System. In: Bass, A., Sisneros, J., Popper, A., Fay, R. (eds) Hearing and Hormones. Springer Handbook of Auditory Research, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-26597-1_7

Download citation

Publish with us

Policies and ethics