Skip to main content

Hormone-Dependent and Experience-Dependent Auditory Plasticity for Social Communication

  • Chapter
  • First Online:
Hearing and Hormones

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 57))

  • 1001 Accesses

Abstract

The auditory neural circuit is embedded in a physiological environment that can be influenced by hormones. Early work demonstrated that hormone mechanisms are highly responsive to social contexts. More recent work shows that hormones affect auditory processing across contexts, leading to adaptive responses to auditory cues, including those involved in social communication. This chapter addresses recent progress in studying these and related mechanisms among mammals in a maternal communication paradigm, wherein both reproductive hormones (e.g., estrogen, oxytocin) and social experience (infant–mother interaction) shape auditory responses to infant sounds. By broadly reviewing studies ranging from hormones and behavior to sensory processing and plasticity, this chapter lays out a systematic approach to investigating how hormones may provide a mechanism for enhancing the perception and learning of auditory cues in reproductive and other social contexts. As discussed, reproductive-related hormones may induce plasticity in central auditory circuitry to enable a sustained trace of infant vocalizations in the auditory cortex, allowing for better recognition and detection of infant cues and sustained maternal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A., & McGregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 29(8), 1123–1144. doi:10.1016/j.neubiorev.2005.05.005.

    Article  PubMed  Google Scholar 

  • Balcombe, J. P. (1990). Vocal recognition of pups by mother Mexican free-tailed bats, Tadarida brasiliensis mexicana. Animal Behaviour, 39(5), 960–966. doi:10.1016/S0003-3472(05)80961-3.

    Article  Google Scholar 

  • Banerjee, S. B., & Liu, R. C. (2013). Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34(4), 300–314. doi:10.1016/j.yfrne.2013.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21(3), 1155–1166. doi:10.1016/j.neuroimage.2003.11.003.

    Article  PubMed  Google Scholar 

  • Beach, F. A., & Jaynes, J. (1956). Studies of maternal retrieving in rats. III. Sensory cues involved in the lactating female’s response to her young. Behaviour, 10(1), 104–124. doi:10.1163/156853956X00129.

    Article  Google Scholar 

  • Bennur, S., Tsunada, J., Cohen, Y. E., & Liu, R. C. (2013). Understanding the neurophysiological basis of auditory abilities for social communication: A perspective on the value of ethological paradigms. Hearing Research, 305, 3–9. doi:10.1016/j.heares.2013.08.008.

    Article  PubMed  Google Scholar 

  • Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355–366. doi:10.1146/annurev.med.60.042307.110802.

    Article  CAS  PubMed  Google Scholar 

  • Bester-Meredith, J. K., Fancher, A. P., & Mammarella, G. E. (2015). Vasopressin proves es-sense-tial: Vasopressin and the modulation of sensory processing in mammals. Frontiers in Endocrinology, 6, 5. doi:10.3389/fendo.2015.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bos, P. A., Hermans, E. J., Montoya, E. R., Ramsey, N. F., & van Honk, J. (2010). Testosterone administration modulates neural responses to crying infants in young females. Psychoneuroendocrinology, 35(1), 114–121. doi:10.1016/j.psyneuen.2009.09.013.

    Article  CAS  PubMed  Google Scholar 

  • Brownstein, M. J., Russell, J. T., & Gainer, H. (1980). Synthesis, transport, and release of posterior pituitary hormones. Science, 207(4429), 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Burkett, J. P., & Young, L. J. (2012). The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology, 224(1), 1–26. doi:10.1007/s00213-012-2794-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, P., Ophir, A. G., & Phelps, S. M. (2009). Central vasopressin and oxytocin receptor distributions in two species of singing mice. The Journal of Comparative Neurology, 516(4), 321–333. doi:10.1002/cne.22116.

    Article  PubMed  Google Scholar 

  • Challis, J. R., & Lye, S. J. (1994). Parturition. In N. J. Knobil (Ed.), The physiology of reproduction (pp. 985–1031). New York: Raven.

    Google Scholar 

  • Charitidi, K., & Canlon, B. (2010). Estrogen receptors in the central auditory system of male and female mice. Neuroscience, 165(3), 923–933. doi:10.1016/j.neuroscience.2009.11.020.

    Article  CAS  PubMed  Google Scholar 

  • Charitidi, K., Meltser, I., Tahera, Y., & Canlon, B. (2009). Functional responses of estrogen receptors in the male and female auditory system. Hearing Research, 252(1–2), 71–78. doi:10.1016/j.heares.2008.12.009.

    Article  CAS  PubMed  Google Scholar 

  • Chrousos, G. P. (1995). The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. New England Journal of Medicine, 332(20), 1351–1363. doi:10.1056/NEJM199505183322008.

    Article  CAS  PubMed  Google Scholar 

  • Chung, S., Son, G. H., & Kim, K. (2011). Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochimica et Biophysica Acta, 1812(5), 581–591. doi:10.1016/j.bbadis.2011.02.003.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L., & Mizrahi, A. (2015). Plasticity during motherhood: Changes in excitatory and inhibitory layer 2/3 neurons in auditory cortex. The Journal of Neuroscience, 35(4), 1806–1815. doi:10.1523/JNEUROSCI.1786-14.2015.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L., Rothschild, G., & Mizrahi, A. (2011). Multisensory integration of natural odors and sounds in the auditory cortex. Neuron, 72(2), 357–369. doi:10.1016/j.neuron.2011.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, O. L., Kasse, C. A., Sanchez, M., Barbosa, F., & Barros, F. A. (2004). Serotonin reuptake inhibitors in auditory processing disorders in elderly patients: Preliminary results. The Laryngoscope, 114(9), 1656–1659. doi:10.1097/00005537-200409000-00029.

    Article  CAS  PubMed  Google Scholar 

  • Deemyad, T., Metzen, M. G., Pan, Y., & Chacron, M. J. (2013). Serotonin selectively enhances perception and sensory neural responses to stimuli generated by same-sex conspecifics. Proceedings of the National Academy of Sciences of the USA, 110(48), 19609–19614. doi:10.1073/pnas.1314008110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900–904. doi:10.1126/science.1158668.

    Article  CAS  PubMed  Google Scholar 

  • Edeline, J. M., Manunta, Y., & Hennevin, E. (2011). Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hearing Research, 274(1–2), 75–84. doi:10.1016/j.heares.2010.08.005.

    Article  PubMed  Google Scholar 

  • Ehret, G. (1987). Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325(6101), 249–251. doi:10.1038/325249a0.

    Article  CAS  PubMed  Google Scholar 

  • Ehret, G. (2005). Infant rodent ultrasounds—A gate to the understanding of sound communication. Behavior Genetics, 35(1), 19–29. doi:10.1007/s10519-004-0853-8.

    Article  PubMed  Google Scholar 

  • Ehret, G. (2009). New perspectives of information transformation through the auditory cortical layers. Proceedings of the National Academy of Sciences of the USA, 106(51), 21463–21464. doi:10.1073/pnas.0912299107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehret, G., & Haack, B. (1984). Motivation and arousal influence sound-induced maternal pup-retrieving behavior in lactating house mice. Zeitschrift für Tierpsychologie, 65(1), 25–39. doi:10.1111/j.1439-0310.1984.tb00370.x.

    Article  Google Scholar 

  • Ehret, G., & Koch, M. (1989). Ultrasound-induced parental behavior in house mice is controlled by female sex-hormones and parental experience. Ethology, 80(1–4), 81–93.

    Google Scholar 

  • Ehret, G., Koch, M., Haack, B., & Markl, H. (1987). Sex and parental experience determine the onset of an instinctive behavior in mice. Naturwissenschaften, 74(1), 47. doi:10.1007/BF00367047.

    Article  CAS  PubMed  Google Scholar 

  • Febo, M., Numan, M., & Ferris, C. F. (2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. The Journal of Neuroscience, 25(50), 11637–11644. doi:10.1523/JNEUROSCI.3604-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Fehm-Wolfsdorf, G., & Nagel, D. (1996). Differential effects of glucocorticoids on human auditory perception. Biological Psychology, 42(1–2), 117–130.

    Article  CAS  PubMed  Google Scholar 

  • Fehm-Wolfsdorf, G., Soherr, U., Arndt, R., Kern, W., Fehm, H. L., & Nagel, D. (1993). Auditory reflex thresholds elevated by stress-induced cortisol secretion. Psychoneuroendocrinology, 18(8), 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, J. N., Aldag, J. M., Insel, T. R., & Young, L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. The Journal of Neuroscience, 21(20), 8278–8285.

    CAS  PubMed  Google Scholar 

  • Fink, G., Sumner, B. E., Rosie, R., Grace, O., & Quinn, J. P. (1996). Estrogen control of central neurotransmission: Effect on mood, mental state, and memory. Cellular and Molecular Neurobiology, 16(3), 325–344.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, A. S., & Sarker, J. (1990). Experience–hormone interactions and maternal behavior in rats. Physiology & Behavior, 47(6), 1165–1173.

    Article  CAS  Google Scholar 

  • Forlano, P. M., Sisneros, J. A., Rohmann, K. N., & Bass, A. H. (2015). Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Frontiers in Neuroendocrinology, 37, 129–145. doi:10.1016/j.yfrne.2014.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formby, D. (1967). Maternal recognition of infant's cry. Developmental Medicine and Child Neurology, 9(3), 293–298.

    Article  CAS  PubMed  Google Scholar 

  • Gahr, M. (2001). Distribution of sex steroid hormone receptors in the avian brain: Functional implications for neural sex differences and sexual behaviors. Microscopy Research and Technique, 55(1), 1–11. doi:10.1002/jemt.1151.

    Article  CAS  PubMed  Google Scholar 

  • Galambos, R. (1956). Some recent experiments on the neurophysiology of hearing. The Annals of Otology, Rhinology, and Laryngology, 65(4), 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Leon, E. E., Lin, F. G., & Liu, R. C. (2009). Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron, 62(5), 705–716. doi:10.1016/j.neuron.2009.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez, R., Mesches, M. H., & McGaugh, J. L. (1996). Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiology of Learning and Memory, 66(3), 253–257. doi:10.1006/nlme.1996.0067.

    Article  CAS  PubMed  Google Scholar 

  • Gandelman, R., Zarrow, M. X., & Denenberg, V. H. (1971a). Stimulus control of cannibalism and maternal behavior in anosmic mice. Physiology & Behavior, 7(4), 583–586.

    Article  CAS  Google Scholar 

  • Gandelman, R., Zarrow, M. X., Denenberg, V. H., & Myers, M. (1971b). Olfactory bulb removal eliminates maternal behavior in the mouse. Science, 171(3967), 210–211.

    Article  CAS  PubMed  Google Scholar 

  • Geissler, D. B., & Ehret, G. (2002). Time-critical integration of formants for perception of communication calls in mice. Proceedings of the National Academy of Sciences of the USA, 99(13), 9021–9025. doi:10.1073/pnas.122606499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler, D. B., Sabine Schmidt, H., & Ehret, G. (2013). Limbic brain activation for maternal acoustic perception and responding is different in mothers and virgin female mice. Journal of Physiology, Paris, 107(1–2), 62–71. doi:10.1016/j.jphysparis.2012.05.006.

    Article  PubMed  Google Scholar 

  • Goense, J. B., & Feng, A. S. (2005). Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. Journal of Neurobiology, 65(1), 22–36. doi:10.1002/neu.20172.

    Article  PubMed  Google Scholar 

  • Goldinger, S. D., Kleider, H. M., & Shelley, E. (1999). The marriage of perception and memory: Creating two-way illusions with words and voices. Memory & Cognition, 27(2), 328–338.

    Article  CAS  Google Scholar 

  • Goodson, J. L., & Bass, A. H. (2001). Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews, 35(3), 246–265.

    Article  CAS  PubMed  Google Scholar 

  • Green, J. A., & Gustafson, G. E. (1983). Individual recognition of human infants on the basis of cries alone. Developmental Psychobiology, 16(6), 485–493. doi:10.1002/dev.420160604.

    Article  CAS  PubMed  Google Scholar 

  • Grimsley, J. M., Hazlett, E. G., & Wenstrup, J. J. (2013). Coding the meaning of sounds: Contextual modulation of auditory responses in the basolateral amygdala. The Journal of Neuroscience, 33(44), 17538–17548. doi:10.1523/JNEUROSCI.2205-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halene, T. B., Talmud, J., Jonak, G. J., Schneider, F., & Siegel, S. J. (2009). Predator odor modulates auditory event-related potentials in mice. Neuroreport, 20(14), 1260–1264. doi:10.1097/WNR.0b013e3283300cde.

    Article  PubMed  Google Scholar 

  • Hall, I. C., Rebec, G. V., & Hurley, L. M. (2010). Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. The Journal of Experimental Biology, 213(Pt. 7), 1009–1017. doi:10.1242/jeb.035956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, I. C., Sell, G. L., & Hurley, L. M. (2011). Social regulation of serotonin in the auditory midbrain. Behavioral Neuroscience, 125(4), 501–511. doi:10.1037/a0024426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y. K., Kover, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 1191–1197. doi:10.1038/nn1941.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, J. L., & Hurley, L. M. (2014). Context-dependent fluctuation of serotonin in the auditory midbrain: The influence of sex, reproductive state and experience. The Journal of Experimental Biology, 217(Pt. 4), 526–535. doi:10.1242/jeb.087627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harley, C. W. (1987). A role for norepinephrine in arousal, emotion and learning?: Limbic modulation by norepinephrine and the Kety hypothesis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 11(4), 419–458.

    Article  CAS  Google Scholar 

  • Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology, 3(12), e386. doi:10.1371/journal.pbio.0030386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurley, L. M., & Sullivan, M. R. (2012). From behavioral context to receptors: Serotonergic modulatory pathways in the IC. Frontiers in Neural Circuits, 6, 58. doi:10.3389/fncir.2012.00058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004). A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology, 14(4), 488–495. doi:10.1016/j.conb.2004.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, G. D. (1965). Mother–infant relationship in the monkey Macaca nemestrina: Development of specificity of maternal response to own infant. Journal of Comparative and Physiological Psychology, 59, 305–308.

    Article  CAS  PubMed  Google Scholar 

  • Ji, W., & Suga, N. (2007). Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. The Journal of Neuroscience, 27(18), 4910–4918. doi:10.1523/JNEUROSCI.5528-06.2007.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R. G., Stevens, K. E., & Rose, G. M. (1998). 5-Hydroxytryptamine2 receptors modulate auditory filtering in the rat. The Journal of Pharmacology and Experimental Therapeutics, 285(2), 643–650.

    CAS  PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799. doi:10.1073/pnas.97.22.11793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwal, J. S., & Rao, P. D. (2002). Oxytocin within auditory nuclei: A neuromodulatory function in sensory processing? Neuroreport, 13(17), 2193–2197. doi:10.1097/01.wnr.0000044220.09266.0d.

    Article  CAS  PubMed  Google Scholar 

  • Kawata, M. (1995). Roles of steroid hormones and their receptors in structural organization in the nervous system. Neuroscience Research, 24(1), 1–46.

    Article  CAS  PubMed  Google Scholar 

  • Keller, M., Meurisse, M., Poindron, P., Nowak, R., Ferreira, G., Shayit, M., et al. (2003). Maternal experience influences the establishment of visual/auditory, but not olfactory recognition of the newborn lamb by ewes at parturition. Developmental Psychobiology, 43(3), 167–176. doi:10.1002/dev.10130.

    Article  PubMed  Google Scholar 

  • Kendrick, K. M., Levy, F., & Keverne, E. B. (1992). Changes in the sensory processing of olfactory signals induced by birth in sheep. Science, 256(5058), 833–836.

    Article  CAS  PubMed  Google Scholar 

  • Kim, P., Feldman, R., Mayes, L. C., Eicher, V., Thompson, N., Leckman, J. F., et al. (2011). Breastfeeding, brain activation to own infant cry, and maternal sensitivity. Journal of Child Psychology and Psychiatry and Allied Disciplines, 52(8), 907–915. doi:10.1111/j.1469-7610.2011.02406.x.

    Article  Google Scholar 

  • Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. The Journal of Neuroscience, 25(49), 11489–11493. doi:10.1523/JNEUROSCI.3984-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Koch, M., & Ehret, G. (1989). Estradiol and parental experience, but not prolactin are necessary for ultrasound recognition and pup-retrieving in the mouse. Physiology & Behavior, 45(4), 771–776.

    Article  CAS  Google Scholar 

  • Kritzer, M. F. (2002). Regional, laminar, and cellular distribution of immunoreactivity for ER alpha and ER beta in the cerebral cortex of hormonally intact, adult male and female rats. Cerebral Cortex, 12(2), 116–128.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, G. W., Reid, C., Kaye, D. M., Jennings, G. L., & Esler, M. D. (2002). Effect of sunlight and season on serotonin turnover in the brain. Lancet, 360(9348), 1840–1842.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, H. K., & Ablow, J. C. (2012). A cry in the dark: Depressed mothers show reduced neural activation to their own infant's cry. Social Cognitive and Affective Neuroscience, 7(2), 125–134. doi:10.1093/scan/nsq091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesch, K.-P., Wolozin, B. L., Murphy, D. L., & Riederer, P. (1993). Primary structure of the human platelet serotonin uptake site: Identity with the brain serotonin transporter. Journal of Neurochemistry, 60(6), 2319–2322. doi:10.1111/j.1471-4159.1993.tb03522.x.

    Article  CAS  PubMed  Google Scholar 

  • Lin, F. G., & Liu, R. C. (2010). Subset of thin spike cortical neurons preserve the peripheral encoding of stimulus onsets. Journal of Neurophysiology, 104(6), 3588–3599. doi:10.1152/jn.00295.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, F. G., Galindo-Leon, E. E., Ivanova, T. N., Mappus, R. C., & Liu, R. C. (2013). A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls. Neuroscience, 247, 102–116. doi:10.1016/j.neuroscience.2013.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R. C. (2015). Sensory systems: The yin and yang of cortical oxytocin. Nature, 520(7548), 444–445. doi:10.1038/nature14386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R. C., & Schreiner, C. E. (2007). Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biology, 5(7), e173. doi:10.1371/journal.pbio.0050173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, R. C., Linden, J. F., & Schreiner, C. E. (2006). Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. European Journal of Neuroscience, 23(11), 3087–3097. doi:10.1111/j.1460-9568.2006.04840.x.

    Article  PubMed  Google Scholar 

  • Liu, R. C., Miller, K. D., Merzenich, M. M., & Schreiner, C. E. (2003). Acoustic variability and distinguishability among mouse ultrasound vocalizations. The Journal of the Acoustical Society of America, 114(6, Pt. 1), 3412–3422.

    Article  PubMed  Google Scholar 

  • Lorberbaum, J. P., Newman, J. D., Horwitz, A. R., Dubno, J. R., Lydiard, R. B., Hamner, M. B., et al. (2002). A potential role for thalamocingulate circuitry in human maternal behavior. Biological Psychiatry, 51(6), 431–445.

    Article  PubMed  Google Scholar 

  • Lotze, M., Wittmann, M., von Steinbuchel, N., Poppel, E., & Roenneberg, T. (1999). Daily rhythm of temporal resolution in the auditory system. Cortex, 35(1), 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Maney, D. L., Cho, E., & Goode, C. T. (2006). Estrogen-dependent selectivity of genomic responses to birdsong. The European Journal of Neuroscience, 23(6), 1523–1529. doi:10.1111/j.1460-9568.2006.04673.x.

    Article  PubMed  Google Scholar 

  • Manunta, Y., & Edeline, J.-M. (1997). Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. European Journal of Neuroscience, 9(4), 833–847. doi:10.1111/j.1460-9568.1997.tb01433.x.

    Article  CAS  PubMed  Google Scholar 

  • Marlin, B. J., Mitre, M., D'Amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520(7548), 499–504. doi:10.1038/nature14402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins, A. R., & Froemke, R. C. (2015). Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nature Neuroscience, 18(103), 1483–1492. doi:10.1038/nn.4090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, C. R., Ehrlichman, R. S., Liang, Y., Gettes, D. R., Evans, D. L., Kanes, S. J., et al. (2006). Corticosterone modulates auditory gating in mouse. Neuropsychopharmacology, 31(5), 897–903. doi:10.1038/sj.npp.1300879.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek, B., Haupt, H., Joachim, R., Klapp, B. F., Stover, T., & Szczepek, A. J. (2010). Stress induces transient auditory hypersensitivity in rats. Hearing Research, 259(1–2), 55–63. doi:10.1016/j.heares.2009.10.006.

    Article  PubMed  Google Scholar 

  • McCormick, D. A., Connors, B. W., Lighthall, J. W., & Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology, 54(4), 782–806.

    CAS  PubMed  Google Scholar 

  • McGaugh, J. L. (2000). Memory—A century of consolidation. Science, 287(5451), 248–251.

    Article  CAS  PubMed  Google Scholar 

  • McNeilly, A. S., Robinson, I. C., Houston, M. J., & Howie, P. W. (1983). Release of oxytocin and prolactin in response to suckling. British Medical Journal, 286(6361), 257–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524–538. doi:10.1038/nrn3044.

    Article  CAS  PubMed  Google Scholar 

  • Miranda, J. A., & Liu, R. C. (2009). Dissecting natural sensory plasticity: Hormones and experience in a maternal context. Hearing Research, 252(1–2), 21–28. doi:10.1016/j.heares.2009.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda, J. A., Shepard, K. N., McClintock, S. K., & Liu, R. C. (2014). Adult plasticity in the subcortical auditory pathway of the maternal mouse. PloS ONE, 9(7), e101630. doi:10.1371/journal.pone.0101630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K., & Kawata, M. (1996). Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: An immunohistochemical and in situ hybridization study. Neuroscience Research, 26(3), 235–269.

    Article  CAS  PubMed  Google Scholar 

  • Munaut, C., Lambert, V., Noël, A., Frankenne, F., Deprez, M., & Foidart, J. M. (2001). Presence of oestrogen receptor type β in human retina. British Journal of Ophthalmology, 85(7), 877–882. doi:10.1136/bjo.85.7.877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma, H., Kawahara, K., Tokumasu, K., Satoh, R., & Okamoto, M. (2014). Effects of arginine vasopressin on auditory brainstem response and cochlear morphology in rats. Auris Nasus Larynx, 41(3), 249–254. doi:10.1016/j.anl.2013.12.004.

    Article  PubMed  Google Scholar 

  • Neubauer, H., & Heil, P. (2008). A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers. Brain Research, 1220, 208–223. doi:10.1016/j.brainres.2007.08.081.

    Article  CAS  PubMed  Google Scholar 

  • Nissen, E., Lilja, G., Widstrom, A. M., & Uvnas-Moberg, K. (1995). Elevation of oxytocin levels early post partum in women. Acta Obstetricia et Gynecologica Scandinavica, 74(7), 530–533.

    Article  CAS  PubMed  Google Scholar 

  • Ogueta, S. B., Schwartz, S. D., Yamashita, C. K., & Farber, D. B. (1999). Estrogen receptor in the human eye: Influence of gender and age on gene expression. Investigative Ophthalmology & Visual Science, 40(9), 1906–1911.

    CAS  Google Scholar 

  • Perrodin, C., Kayser, C., Logothetis, N. K., & Petkov, C. I. (2011). Voice cells in the primate temporal lobe. Current Biology, 21(16), 1408–1415. doi:10.1016/j.cub.2011.07.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poindron, P., Le Neindre, P., Raksanyi, I., Trillat, G., & Orgeur, P. (1980). Importance of the characteristics of the young in the manifestation and establishment of maternal behaviour in sheep. Reproduction, Nutrition, Development, 20(3B), 817–826.

    Article  CAS  Google Scholar 

  • Prevost, M., Zelkowitz, P., Tulandi, T., Hayton, B., Feeley, N., Carter, C. S., et al. (2014). Oxytocin in pregnancy and the postpartum: Relations to labor and its management. Frontiers in Public Health, 2, 1. doi:10.3389/fpubh.2014.00001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13(1), 87–103.

    CAS  PubMed  Google Scholar 

  • Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., et al. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70(1), 121–131. doi:10.1016/j.neuron.2011.02.038.

    Article  CAS  PubMed  Google Scholar 

  • Remage-Healey, L., Coleman, M. J., Oyama, R. K., & Schlinger, B. A. (2010). Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proceedings of the National Academy of Sciences of the USA, 107(8), 3852–3857. doi:10.1073/pnas.0906572107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117(6), 2505–2511. doi:10.1210/endo-117-6-2505.

    Article  CAS  PubMed  Google Scholar 

  • Riem, M. M., Bakermans-Kranenburg, M. J., Pieper, S., Tops, M., Boksem, M. A., Vermeiren, R. R., et al. (2011). Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: A randomized controlled trial. Biological Psychiatry, 70(3), 291–297. doi:10.1016/j.biopsych.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  • Searcy, W. A., & Marler, P. (1981). A test for responsiveness to song structure and programming in female sparrows. Science, 213(4510), 926–928. doi:10.1126/science.213.4510.926.

    Article  CAS  PubMed  Google Scholar 

  • Seifritz, E., Esposito, F., Neuhoff, J. G., Luthi, A., Mustovic, H., Dammann, G., et al. (2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54(12), 1367–1375.

    Article  PubMed  Google Scholar 

  • Semsar, K., Kandel, F. L., & Godwin, J. (2001). Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Hormones and Behavior, 40(1), 21–31. doi:10.1006/hbeh.2001.1663.

    Article  CAS  PubMed  Google Scholar 

  • Shepard, K. N., Kilgard, M. P., & Liu, R. C. (2012). Experience-dependent plasticity and the auditory cortex. In Y. E. Cohen, A. N. Popper, & R. R. Fay (Eds.), Neural correlates of auditory cognition (pp. 293–327). New York: Springer Science + Business Media.

    Google Scholar 

  • Shepard, K. N., Liles, L. C., Weinshenker, D., & Liu, R. C. (2015a). Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. The Journal of Neuroscience, 35(6), 2432–2437. doi:10.1523/JNEUROSCI.0532-14.2015.

    Google Scholar 

  • Shepard, K. N., Lin, F. G., Zhao, C. L., Chong, K. K., & Liu, R. C. (2015b). Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. The Journal of Neuroscience, 35(6), 2636–2645. doi:10.1523/JNEUROSCI.3803-14.2015.

    Google Scholar 

  • Sisneros, J. A., Forlano, P. M., Deitcher, D. L., & Bass, A. H. (2004). Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science, 305(5682), 404–407. doi:10.1126/science.1097218.

    Article  CAS  PubMed  Google Scholar 

  • Stiebler, I., Neulist, R., Fichtel, I., & Ehret, G. (1997). The auditory cortex of the house mouse: Left–right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(6), 559–571.

    Article  CAS  Google Scholar 

  • Sugino, K., Hempel, C. M., Miller, M. N., Hattox, A. M., Shapiro, P., Wu, C., et al. (2006). Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neuroscience, 9(1), 99–107. doi:10.1038/nn1618.

    Article  CAS  PubMed  Google Scholar 

  • Swain, J. E., Kim, P., & Ho, S. S. (2011). Neuroendocrinology of parental response to baby-cry. Journal of Neuroendocrinology, 23(11), 1036–1041. doi:10.1111/j.1365-2826.2011.02212.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, J. E., Kim, P., Spicer, J., Ho, S. S., Dayton, C. J., Elmadih, A., et al. (2014). Approaching the biology of human parental attachment: Brain imaging, oxytocin and coordinated assessments of mothers and fathers. Brain Research, 1580, 78–101. doi:10.1016/j.brainres.2014.03.007.

    Article  CAS  PubMed  Google Scholar 

  • Swain, J. E., Lorberbaum, J. P., Kose, S., & Strathearn, L. (2007). Brain basis of early parent–infant interactions: Psychology, physiology, and in vivo functional neuroimaging studies. Journal of Child Psychology and Psychiatry and Allied Disciplines, 48(3–4), 262–287. doi:10.1111/j.1469-7610.2007.01731.x.

    Article  Google Scholar 

  • Swain, J. E., Tasgin, E., Mayes, L. C., Feldman, R., Constable, R. T., & Leckman, J. F. (2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology and Psychiatry and Allied Disciplines, 49(10), 1042–1052. doi:10.1111/j.1469-7610.2008.01963.x.

    Article  Google Scholar 

  • Swenson, R. M., & Vogel, W. H. (1983). Plasma catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock. Pharmacology Biochemistry and Behavior, 18(5), 689–693.

    Article  CAS  Google Scholar 

  • ten Cate, W. J., Curtis, L. M., Small, G. M., & Rarey, K. E. (1993). Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea. The Laryngoscope, 103(8), 865–871. doi:10.1288/00005537-199308000-00007.

    PubMed  Google Scholar 

  • Tobin, V. A., Hashimoto, H., Wacker, D. W., Takayanagi, Y., Langnaese, K., Caquineau, C., et al. (2010). An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature, 464(7287), 413–417. doi:10.1038/nature08826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tops, M., van Ijzendoorn, M. H., Riem, M. M., Boksem, M. A., & Bakermans-Kranenburg, M. J. (2011). Oxytocin receptor gene associated with the efficiency of social auditory processing. Frontiers in Psychiatry, 2, 60. doi:10.3389/fpsyt.2011.00060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trillmich, F. (1981). Mutual mother–pup recognition in Galápagos fur seals and sea lions: Cues used and functional significance. Behaviour, 78(1/2), 21–42. doi:10.2307/4534129.

    Article  Google Scholar 

  • Tsanov, M., & Manahan-Vaughan, D. (2007). The adult visual cortex expresses dynamic synaptic plasticity that is driven by the light/dark cycle. The Journal of Neuroscience, 27(31), 8414–8421. doi:10.1523/JNEUROSCI.1101-07.2007.

    Article  CAS  PubMed  Google Scholar 

  • Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865–871.

    Article  PubMed  Google Scholar 

  • Twarog, B. M., & Page, I. H. (1953). Serotonin content of some mammalian tissues and urine and a method for its determination. The American Journal of Physiology, 175(1), 157–161.

    CAS  PubMed  Google Scholar 

  • von Euler, U. S., & Liljestrand, G. (1946). Observations on the pulmonary arterial blood pressure in the cat. Acta Physiologica Scandinavica, 12(4), 301–320. doi:10.1111/j.1748-1716.1946.tb00389.x.

    Google Scholar 

  • Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279–290. doi:10.1038/nrn1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wersinger, S. R., Ginns, E. I., O'Carroll, A. M., Lolait, S. J., & Young, W. S., 3rd. (2002). Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Molecular Psychiatry, 7(9), 975–984. doi:10.1038/sj.mp.4001195.

    Article  CAS  PubMed  Google Scholar 

  • Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.

    CAS  PubMed  Google Scholar 

  • Wu, M. V., Manoli, D. S., Fraser, E. J., Coats, J. K., Tollkuhn, J., Honda, S., et al. (2009). Estrogen masculinizes neural pathways and sex-specific behaviors. Cell, 139(1), 61–72. doi:10.1016/j.cell.2009.07.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder, K. M., Lu, K., & Vicario, D. S. (2012). Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches. Neuroreport, 23(16), 922–926. doi:10.1097/WNR.0b013e3283588b61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yovanof, S., & Feng, A. S. (1983). Effects of estradiol on auditory evoked responses from the frog's auditory midbrain. Neuroscience Letters, 36(3), 291–297.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly K. Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chong, K.K., Liu, R.C. (2016). Hormone-Dependent and Experience-Dependent Auditory Plasticity for Social Communication. In: Bass, A., Sisneros, J., Popper, A., Fay, R. (eds) Hearing and Hormones. Springer Handbook of Auditory Research, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-26597-1_6

Download citation

Publish with us

Policies and ethics