Skip to main content

Hormones and the Incentive Salience of Bird Song

  • Chapter
  • First Online:
Hearing and Hormones

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 57))

Abstract

Nervous systems have evolved many features to ensure that the resources necessary for survival and reproduction are attractive. Because not all resources are valuable in all contexts, those features need to be plastic, in other words, the attractiveness or ‘incentive salience’ of some stimuli should change according to context. Courtship vocalizations, for example, have high incentive salience only during the breeding season, when approaching potential mates is adaptive. Female songbirds are attracted to male song only when reproductive hormones, such as estradiol, are high. In this chapter, the brain mechanisms by which estradiol changes the incentive salience of song are considered. First, estradiol may act directly on central auditory structures. Second, cells synthesizing dopamine, norepinephrine, and serotonin innervate the auditory pathway and are sensitive to estradiol, making them excellent candidates for mediating the effects of endocrine state on the perception of song. Third, the auditory forebrain of songbirds contains dense populations of oxytocin receptors, which in mammals play a clear role in social reward and are regulated by estradiol. Each of these neuromodulatory systems may prime auditory areas to respond differently to song depending on the bird’s reproductive condition. Seasonally breeding songbirds, for which attraction to song changes throughout the year, are ideal model systems for understanding how these neuromodulatory systems contribute to plasticity of behavioral responses to sound. Juvenile male songbirds, which seek out song in order to learn to sing, offer the opportunity to study how these systems contribute to social motivation during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adret, P. (1993). Operant conditioning, song learning and imprinting to taped song in the zebra finch. Animal Behaviour, 46, 149–159.

    Article  Google Scholar 

  • Ahn, S., & Phillips, A. G. (1999). Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. Journal of Neuroscience, 19, RC29.

    CAS  PubMed  Google Scholar 

  • Alcaro, A., Huber, R., & Panksepp, J. (2007). Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Research Reviews, 56, 283–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appeltants, D., Absil, P., Balthazart, J., & Ball, G. F. (2000). Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry. Journal of Chemical Neuroanatomy, 18, 117–133.

    Article  CAS  PubMed  Google Scholar 

  • Appeltants, D., Del Negro, C., & Balthazart, J. (2002). Noradrenergic control of auditory information processing in female canaries. Behavioural Brain Research, 113, 221–235.

    Article  Google Scholar 

  • Barclay, S. R., & Harding, C. F. (1988). Androstenedione modulation of monoamine levels and turnover in hypothalamic and vocal control nuclei in the male zebra finch: Steroid effects on brain monoamines. Brain Research, 459, 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, S. R., & Harding, C. F. (1990). Differential modulation of monoamine levels and turnover rates by estrogen and/or androgen in hypothalamic and vocal control nuclei of male zebra finches. Brain Research, 523, 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Beninger, R. J., & Gerdjikov, T. (2004). The role of signaling molecules in reward-related incentive learning. Neurotoxicity Research, 6, 91–104.

    Article  PubMed  Google Scholar 

  • Bentley, G. E., Wingfield, J. C., Morton, M. L., & Ball, G. F. (2000). Stimulatory effects on the reproductive axis in female songbirds by conspecific and heterospecific male song. Hormones and Behavior, 37, 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, D. J., Bentley, G. E., Balthazart, J., Turek, F. W., & Ball, G. F. (1999). Androgen receptor, estrogen receptor α, and estrogen receptor β show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinology, 140, 4633–4643.

    CAS  PubMed  Google Scholar 

  • Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191, 391–431.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, K. C., & Schulkin, J. (1989). Palatability shift of a salt-associated incentive during sodium depletion. Quarterly Journal of Experimental Psychology B, 41, 121–138.

    CAS  Google Scholar 

  • Bharati, I. S., & Goodson, J. L. (2006). Fos responses of dopamine neurons to sociosexual stimuli in male zebra finches. Neuroscience, 143, 661–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhner, J. (1990). Early acquisition of song in the zebra finch, Taeniopygia guttata. Animal Behaviour, 39, 369–374.

    Article  Google Scholar 

  • Braaten, R. F., & Reynolds, K. (1999). Auditory preference for conspecific song in isolation-reared zebra finches. Animal Behaviour, 58, 105–111.

    Article  PubMed  Google Scholar 

  • Butler, A. B., & Hodos, W. (2005). Comparative vertebrate neuroanatomy: Evolution and adaptation. New York: John Wiley.

    Book  Google Scholar 

  • Calabrese, A., & Woolley, S. M. (2015). Coding principles of the canonical cortical microcircuit in the avian brain. Proceedings of the National Academy of Sciences of the USA, 112, 3517–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caras, M. L., Brenowitz, E., & Rubel, E. W. (2010). Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196, 581–599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Themes and variations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chao, A., Paon, A., & Remage-Healey, L. (2015). Dynamic variation in forebrain estradiol levels during song learning. Developmental Neurobiology, 75, 271–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlier, T. D., Po, K. W., Newman, A. E., Shah, A. H., Saldanha, C. J., & Soma, K. K. (2010). 17β-Estradiol levels in male zebra finch brain: Combining Palkovits punch and an ultrasensitive radioimmunoassay. General and Comparative Endocrinology, 167, 18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, M. F., Chaiken, M., Zuo, M., & Miller, H. (1999). Nucleus taenia of the amygdala of birds: Anatomical and functional studies in ring doves (Streptopelia risoria) and European starlings (Sturnus vulgaris). Brain, Behavior and Evolution, 53, 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Clayton, D. F. (2000). The genomic action potential. Neurobiology of Learning and Memory, 74, 185–216.

    Article  CAS  PubMed  Google Scholar 

  • Commissiong, J. W. (1985). Monoamine metabolites: Their relationship and lack of relationship to monoaminergic neuronal activity. Biochemistry & Pharmacology, 34, 1127–1131.

    Article  CAS  Google Scholar 

  • Cone, J. J., McCutcheon, J. E., & Roitman, M. F. (2014). Ghrelin acts as an interface between physiological state and phasic dopamine signaling. Journal of Neuroscience, 34, 4905–4913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cone, J. J., Roitman, J. D., & Roitman, M. F. (2015). Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli. Journal of Neurochemistry, 133, 844–856.

    Article  CAS  PubMed  Google Scholar 

  • Cools, R., Roberts, A. C., & Robbins, T. W. (2008). Serotonergic regulation of emotional and behavioural control processes. Trends in Cognitive Sciences, 12, 31–40.

    Article  PubMed  Google Scholar 

  • Cransac, H., Cottet-Emard, J. M., Hellstrom, S., & Peyrin, L. (1998). Specific sound-induced noradrenergic and serotonergic activation in central auditory structures. Hearing Research, 118, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R., & Chapelot, D. (2004). Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. American Journal of Physiology – Endocrinology and Metabolism, 287, E297–E304.

    Article  CAS  PubMed  Google Scholar 

  • De Groof, G., Poirier, C., George, I., Hausberger, M., & Van der Linden, A. (2013). Functional changes between seasons in the male songbird auditory forebrain. Frontiers in Behavioral Neuroscience, 7, 1–13.

    Article  Google Scholar 

  • Derégnaucourt, S., Poirier, C., Kant, A. V., Linden, A. V., & Gahr, M. (2013). Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song. Journal of Physiology - Paris, 107, 210–218.

    Article  Google Scholar 

  • Doupe, A. J. (1993). A neural circuit specialized for vocal learning. Current Opinion in Neurobiology, 3, 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Doupe, A. J., Perkel, D. J., Reiner, A., & Stern, E. A. (2005). Birdbrains could teach basal ganglia research a new song. Trends in Neurosciences, 28, 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Durand, S. E., Tepper, J. M., & Cheng, M. F. (1992). The shell region of the nucleus ovoidalis: A subdivision of the avian auditory thalamus. Journal of Comparative Neurology, 323, 495–518.

    Article  CAS  PubMed  Google Scholar 

  • Eales, L. A. (1987). Do zebra finch males that have been raised by another species still tend to select a con-specific song tutor? Animal Behaviour, 35, 1347–1355.

    Article  Google Scholar 

  • Eales, L. A. (1989). The influences of visual and vocal interaction on song learning in zebra finches. Animal Behaviour, 37, 507–520.

    Article  Google Scholar 

  • Earp, S. E., & Maney, D. L. (2012). Birdsong: Is it music to their ears? Frontiers in Evolutionary Neuroscience, 4, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edeline, J. M. (2012). Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Frontiers in Behavioral Neuroscience, 6, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehret, G. (2005). Infant rodent ultrasounds—A gate to the understanding of sound communication. Behavioral Genetics, 35, 19–29.

    Article  Google Scholar 

  • Eriksson, D., & Wallin, L. (1986). Male bird song attracts females—A field experiment. Behavioral Ecology and Sociobiology, 19, 297–299.

    Article  Google Scholar 

  • Fudim, O. K. (1978). Sensory preconditioning of flavors with a formalin-produced sodium need. Journal of Experimental Psychology: Animal Behavioral Processes, 4, 276–285.

    CAS  Google Scholar 

  • Gahr, M. (2001). Distribution of sex steroid hormone receptors in the avian brain: Functional implications for neural sex differences and sexual behaviors. Microscopy Research and Technique, 55, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Gahr, M., Guttinger, H. R., & Kroodsma, D. E. (1993). Estrogen receptors in the avian brain: Survey reveals general distribution and forebrain areas unique to songbirds. Journal of Comparative Neurology, 327, 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Gale, S. D., & Perkel, D. J. (2010). A basal ganglia pathway drives selective auditory responses in songbird dopaminergic neurons via disinhibition. Journal of Neuroscience, 30, 1027–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentner, T. Q., & Hulse, S. H. (2000). Female European starling preference and choice for variation in conspecific male song. Animal Behaviour, 59, 443–458.

    Article  PubMed  Google Scholar 

  • Goodson, J. L. (2013). Deconstructing sociality, social evolution and relevant nonapeptide functions. Psychoneuroendocrinology, 38, 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Goodson, J. L., Schrock, S. E., Klatt, J. D., Kabelik, D., & Kingsbury, M. A. (2009). Mesotocin and nonapeptide receptors promote estrildid flocking behavior. Science, 325, 862–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Grinevich, V., Knobloch-Bollmann, H. S., Eliava, M., Busnelli, M., & Chini, B. (2016). Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biological Psychiatry, 79(3), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Grozhik, A. V., Horozsko, C. P., Horton, B. M., Hu, Y., Voisin, D. A., & Maney, D. L. (2014). Hormonal regulation of vasotocin receptor mRNA in a seasonally breeding songbird. Hormones and Behavior, 65, 254–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., et al. (2010). Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biological Psychiatry, 67, 692–694.

    Article  CAS  PubMed  Google Scholar 

  • Gurney, M. E., & Konishi, M. (1980). Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science, 208, 1380–1383.

    Article  CAS  PubMed  Google Scholar 

  • Hall, I. C., Rebec, G. V., & Hurley, L. M. (2010). Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. Journal of Experimental Biology, 213, 1009–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammock, E. A. (2015). Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology, 40, 24–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, C. F., Barclay, S. R., & Waterman, S. A. (1998). Changes in catecholamine levels and turnover rates in hypothalamic, vocal control, and auditory nuclei in male zebra finches during development. Journal of Neurobiology, 34, 329–346.

    Article  CAS  PubMed  Google Scholar 

  • Henry, K. S., & Lucas, J. R. (2009). Vocally correlated seasonal auditory variation in the house sparrow (Passer domesticus). Journal of Experimental Biology, 212, 3817–3822.

    Article  CAS  PubMed  Google Scholar 

  • Hollander, E., Bartz, J., Chaplin, W., Phillips, A., Sumner, J., Soorya, L., et al. (2007). Oxytocin increases retention of social cognition in autism. Biological Psychiatry, 61, 498–503.

    Article  CAS  PubMed  Google Scholar 

  • Houdouin, F., Cespuglio, R., Gharib, A., Sarda, N., & Jouvet, M. (1991). Detection of the release of 5-hydroxyindole compounds in the hypothalamus and the n. raphe dorsalis throughout the sleep-waking cycle and during stressful situations in the rat: A polygraphic and voltammetric approach. Experimental Brain Research, 85, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Hurley, L. M., Devilbiss, D. M., & Waterhouse, B. D. (2004). A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology, 14, 488–495.

    Article  CAS  PubMed  Google Scholar 

  • Hurley, L. M., & Hall, I. C. (2011). Context-dependent modulation of auditory processing by serotonin. Hearing Research, 279, 74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley, L. M., & Pollak, G. D. (2005). Serotonin modulates responses to species-specific vocalizations in the inferior colliculus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 535–546.

    Article  CAS  PubMed  Google Scholar 

  • Hurley, L. M., & Sullivan, M. R. (2012). From behavioral context to receptors: Serotonergic modulatory pathways in the IC. Frontiers in Neural Circuits, 6, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihle, E. C., Hart, M., Jongsma, M., Tecott, L. H., & Doupe, A. J. (2015). Dopamine physiology in the basal ganglia of male zebra finches during social stimulation. European Journal of Neuroscience, 41, 1506–1514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikebuchi, M., Hasegawa, T., & Bischof, H. J. (2009). Amygdala and socio-sexual behavior in male zebra finches. Brain, Behavior and Evolution, 74, 250–257.

    Article  PubMed  Google Scholar 

  • Immelmann, K. (1969). Song development in the zebra finch and other estrildid finches. In R. A. Hind (Ed.), Bird vocalizations (pp. 61–74). Cambridge: Cambridge University Press.

    Google Scholar 

  • Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 65, 768–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, H., & Clayton, D. F. (1997). Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron, 19, 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Kabelik, D., Schrock, S. E., Ayres, L. C., & Goodson, J. L. (2011). Estrogenic regulation of dopaminergic neurons in the opportunistically breeding zebra finch. General and Comparative Endocrinology, 173, 96–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwal, J. S., & Rao, P. D. (2002). Oxytocin within auditory nuclei: A neuromodulatory function in sensory processing? Neuroreport, 13, 2193–2197.

    Article  CAS  PubMed  Google Scholar 

  • Kitt, C. A., & Brauth, S. E. (1986a). Telencephalic projections from midbrain and isthmal cell groups in the pigeon. II. The nigral complex. Journal of Comparative Neurology, 247, 92–110.

    Article  CAS  PubMed  Google Scholar 

  • Kitt, C. A., & Brauth, S. E. (1986b). Telencephalic projections from midbrain and isthmal cell groups in the pigeon. I. Locus coeruleus and subcoeruleus. Journal of Comparative Neurology, 247, 69–91.

    Article  CAS  PubMed  Google Scholar 

  • Klatt, J. D., & Goodson, J. L. (2013). Oxytocin-like receptors mediate pair bonding in a socially monogamous songbird. Proceedings of the Royal Society of London B: Biological Sciences, 280(1750), 20122396.

    Article  CAS  Google Scholar 

  • Koelsch, S., Fritz, T. V., Cramon, D. Y., Muller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239–250.

    Article  PubMed  Google Scholar 

  • Kritzer, M. F., & Kohama, S. G. (1998). Ovarian hormones influence the morphology, distribution, and density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult Rhesus monkeys. Journal of Comparative Neurology, 395, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Kubikova, L., Wada, K., & Jarvis, E. D. (2010). Dopamine receptors in a songbird brain. Journal of Comparative Neurology, 518, 741–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc, M. M., Goode, C. T., MacDougall-Shackleton, E. A., & Maney, D. L. (2007). Estradiol modulates brainstem catecholaminergic cell groups and projections to the auditory forebrain in a female songbird. Brain Research, 1171, 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Leung, C. H., Abebe, D. F., Earp, S. E., Goode, C. T., Grozhik, A. V., Mididoddi, P., et al. (2011). Neural distribution of vasotocin receptor mRNA in two species of songbird. Endocrinology, 152, 4865–4881.

    Article  CAS  PubMed  Google Scholar 

  • Leung, C. H., Goode, C. T., Young, L. J., & Maney, D. L. (2009). Neural distribution of nonapeptide binding sites in two species of songbird. Journal of Comparative Neurology, 513, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Lim, M. M., & Young, L. J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 50, 506–517.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R. C. (2015). Sensory systems: The yin and yang of cortical oxytocin. Nature, 520, 444–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas, J. R., Freeberg, T. M., Long, G. R., & Krishnan, A. (2007). Seasonal variation in avian auditory evoked responses to tones: A comparative analysis of Carolina chickadees, tufted titmice, and white-breasted nuthatches. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 201–215.

    Article  PubMed  Google Scholar 

  • Lynch, K. S., & Ball, G. F. (2008). Noradrenergic deficits alter processing of communication signals in female songbirds. Brain, Behavior and Evolution, 72, 207–214.

    Article  PubMed  Google Scholar 

  • Lynch, K. S., Diekamp, B., & Ball, G. F. (2012). Colocalization of immediate early genes in catecholamine cells after song exposure in female zebra finches (Taeniopygia guttata). Brain, Behavior and Evolution, 79, 252–260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maney, D. L. (2013). The incentive salience of courtship vocalizations: Hormone-mediated ‘wanting’ in the auditory system. Hearing Research, 305, 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Maney, D. L., & Ball, G. F. (2003). Fos-like immunoreactivity in catecholaminergic brain nuclei after territorial behavior in free-living song sparrows. Journal of Neurobiology, 56, 163–170.

    Article  PubMed  Google Scholar 

  • Maney, D. L., & Goodson, J. L. (2011). Neurogenomic mechanisms of aggression in songbirds. Advances in Genetics, 75, 83–119.

    Article  CAS  PubMed  Google Scholar 

  • Maney, D. L., & Pinaud, R. (2011). Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Frontiers in Neuroendocrinology, 32, 287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maney, D. L., Bernard, D. J., & Ball, G. F. (2001). Gonadal steroid receptor mRNA in catecholaminergic nuclei of the canary brainstem. Neuroscience Letters, 311, 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Maney, D. L., Cho, E., & Goode, C. T. (2006). Estrogen-dependent selectivity of genomic responses to birdsong. European Journal of Neuroscience, 23, 1523–1529.

    Article  PubMed  Google Scholar 

  • Maney, D. L., Goode, C. T., Lake, J. I., Lange, H. L., & O’Brien, S. (2007). Rapid neuroendocrine responses to auditory courtship signals. Endocrinology, 148, 5614–5623.

    Article  CAS  PubMed  Google Scholar 

  • Maney, D. L., Goode, C. T., Lange, H. S., Sanford, S. E., & Solomon, B. L. (2008). Estradiol modulates neural responses to song in a seasonal songbird. Journal of Comparative Neurology, 511, 173–186.

    Article  PubMed  Google Scholar 

  • Maney, D. L., MacDougall-Shackleton, E. A., MacDougall-Shackleton, S. A., Ball, G. F., & Hahn, T. P. (2003). Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in a female songbird. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189, 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Marler, P., & Tamura, M. (1964). Culturally transmitted patterns of vocal behavior in sparrows. Science, 146, 1483–1486.

    Article  CAS  PubMed  Google Scholar 

  • Marler, P., Peters, S., & Wingfield, J. (1987). Correlations between song acquisition, song production, and plasma levels of testosterone and estradiol in sparrows. Journal of Neurobiology, 18, 531–548.

    Article  CAS  PubMed  Google Scholar 

  • Marlin, B. J., Mitre, M., D’amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520, 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matragrano, L. L., Beaulieu, M., Phillip, J. O., Rae, A. I., Sanford, S. E., Sockman, K. W., et al. (2012). Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway. PLoS ONE, 7, e39388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matragrano, L. L., LeBlanc, M. M., Chitrapu, A., Blanton, Z. E., & Maney, D. L. (2013). Testosterone modulates genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird. Developmental Neurobiology, 73, 455–468.

    Article  CAS  PubMed  Google Scholar 

  • Matragrano, L. L., Sanford, S. E., Salvante, K. G., Beaulieu, M., Sockman, K. W., & Maney, D. L. (2012). Estradiol-dependent modulation of serotonergic markers in auditory areas of a seasonally breeding songbird. Behavioral Neuroscience, 126, 110–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matragrano, L. L., Sanford, S. E., Salvante, K. G., Sockman, K. W., & Maney, D. L. (2011). Estradiol-dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird. European Journal of Neuroscience, 34, 416–425.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mello, C. V., & Clayton, D. F. (1994). Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. Journal of Neuroscience, 14, 6652–6666.

    CAS  PubMed  Google Scholar 

  • Mello, C. V., Pinaud, R., & Ribeiro, S. (1998). Noradrenergic system of the zebra finch brain: Immunocytochemical study of dopamine-ß-hydroxylase. Journal of Comparative Neurology, 400, 207–228.

    Article  CAS  PubMed  Google Scholar 

  • Metherate, R., Intskirveli, I., & Kawai, H. D. (2012). Nicotinic filtering of sensory processing in auditory cortex. Frontiers in Behavioral Neuroscience, 6, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T. V., & Caldwell, H. K. (2015). Oxytocin during development: Possible organizational effects on behavior. Frontiers in Endocrinology, 6, 76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. H., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28, 1150–1162.

    Article  PubMed  Google Scholar 

  • Mooney, R. (2009). Neural mechanisms for learned birdsong. Learning and Memory, 16, 655–669.

    Article  PubMed  Google Scholar 

  • Nagle, L., & Kreutzer, M. I. (1997). Song tutoring influences female song preferences in domesticated canaries. Behaviour, 134, 89–104.

    Article  Google Scholar 

  • Nelson, D. A., & Marler, P. (1993). Innate recognition of song in white-crowned sparrows: A role in selective vocal learning? Animal Behaviour, 46, 806–808.

    Article  Google Scholar 

  • Nick, T. A., & Konishi, M. (2005). Neural song preference during vocal learning in the zebra finch depends on age and state. Journal of Neurobiology, 62, 231–242.

    Article  PubMed  Google Scholar 

  • Nordeen, E. J., Holtzman, D. A., & Nordeen, K. W. (2009). Increased Fos expression among midbrain dopaminergic cell groups during birdsong tutoring. European Journal of Neuroscience, 30, 662–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pau, K. Y. F., Hess, D. L., Kohama, S., Bao, J., Pau, C. Y., & Spies, H. G. (2000). Oestrogen upregulates noradrenaline release in the mediobasal hypothalamus and tyrosine hydroxylase gene expression in the brainstem of ovariectomized rhesus macaques. Journal of Neuroendocrinology, 12, 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Pawlisch, B. A., & Riters, L. V. (2010). Selective behavioral responses to male song are affected by the dopamine agonist GBR-12909 in female European starlings (Sturnus vulgaris). Brain Research, 1353, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Pawlisch, B. A., Stevenson, S. A., & Riters, L. V. (2011). α1-Noradrenegic receptor antagonism disrupts female songbird responses to male song. Neuroscience Letters, 496, 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Phillmore, L. S. (2008). Discrimination: From behaviour to brain. Behavioural Processes, 77, 285–297.

    Article  PubMed  Google Scholar 

  • Phillmore, L. S., Veysey, A. S., & Roach, S. P. (2011). Zenk expression in auditory regions changes with breeding condition in male black-capped chickadees (Poecile atricapillus). Behavioural Brain Research, 225, 464–472.

    Article  PubMed  Google Scholar 

  • Puts, D. A. (2006). Cyclic variation in women’s preferences for masculine traits: Potential hormonal causes. Human Nature, 17, 114–127.

    Article  PubMed  Google Scholar 

  • Reiner, A., Karle, E. J., Anderson, K. D., & Medina, L. (1994). Catecholaminergic perikarya and fibers in the avian nervous system. In W. F. A. Smeets & A. Reiner (Eds.), Phylogeny and development of the catecholamine system in the CNS of vertebrates (pp. 135–181). Cambridge: Cambridge University Press.

    Google Scholar 

  • Remage-Healey, L. (2012). Brain estrogen signaling effects acute modulation of acoustic communication behaviors: A working hypothesis. Bioessays, 34, 1009–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey, L., & Joshi, N. R. (2012). Changing neuroestrogens within the auditory forebrain rapidly transform stimulus selectivity in a downstream sensorimotor nucleus. Journal of Neuroscience, 32, 8231–8241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remage-Healey, L., Dong, S. M., Chao, A., & Schlinger, B. A. (2012). Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. Journal of Neurophysiology, 107, 1621–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riebel, K. (2000). Early exposure leads to repeatable preferences for male song in female zebra finches. Proceedings of the Royal Society of London B: Biological Sciences, 267, 2553–2558.

    Article  CAS  Google Scholar 

  • Riters, L. V. (2011). Pleasure seeking and birdsong. Neuroscience and Biobehavioral Reviews, 35, 1837–1845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riters, L. V., & Pawlisch, B. A. (2007). Evidence that norepinephrine influences responses to male courtship song and activity within song control regions and the ventromedial nucleus of the hypothalamus in female European starlings. Brain Research, 1149, 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Riters, L. V., Eens, M., Pinxten, R., & Ball, G. F. (2002). Seasonal changes in the densities of α2-noradrenergic receptors are inversely related to changes in testosterone and the volumes of song control nuclei in male European starlings. Journal of Comparative Neurology, 444, 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Riters, L. V., Olesen, K. M., & Auger, C. J. (2007). Evidence that female endocrine state influences catecholamine responses to male courtship song in European starlings. General and Comparative Endocrinology, 154, 137–149.

    Article  CAS  PubMed  Google Scholar 

  • Sanford, S. E., Lange, H. S., & Maney, D. L. (2010). Topography of estradiol-modulated genomic responses in the songbird auditory forebrain. Developmental Neurobiology, 70, 73–86.

    CAS  PubMed  Google Scholar 

  • Schlinger, B. A. (1997). Sex steroids and their actions on the birdsong system. Journal of Neurobiology, 33, 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Schlinger, B. A. (2015). Steroids in the avian brain: Heterogeneity across space and time. Journal of Ornithology, 156(Suppl 1), 419–424.

    Article  PubMed  Google Scholar 

  • Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.

    Article  CAS  PubMed  Google Scholar 

  • Serova, L. I., Maharjan, S., Huang, A., Sun, D., Kaley, G., & Sabban, E. L. (2004). Response of tyrosine hydroxylase and GTP cyclohydrase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration. Brain Research, 1015, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sockman, K. W., & Salvante, K. G. (2008). The integration of song environment by catecholaminergic systems innervating the auditory telencephalon of adult female European starlings. Developmental Neurobiology, 68, 656–668.

    Article  PubMed  Google Scholar 

  • Sockman, K. W., Gentner, T. Q., & Ball, G. F. (2002). Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings. Proceedings of the Royal Society of London B: Biological Sciences, 269, 2479–2485.

    Article  Google Scholar 

  • Sperry, T. S., Moore, I. T., Meddle, S. L., Benowitz-Fredericks, Z. M., & Wingfield, J. C. (2005). Increased sensitivity of the serotonergic system during the breeding season in free-living American tree sparrows. Behavioural Brain Research, 157, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Sperry, T. S., Thompson, C. K., & Wingfield, J. C. (2003). Effects of acute treatment with 8-OH-DPAT and fluoxetine on aggressive behaviour in male song sparrows (Melospiza melodia morphna). Journal of Neuroendocrinology, 15, 150–160.

    Article  CAS  PubMed  Google Scholar 

  • Stark, H., & Scheich, H. (1997). Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: A long-term microdialysis study of metabolites. Journal of Neurochemistry, 68, 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Stripling, R., Kruse, A. A., & Clayton, D. F. (2001). Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. Journal of Neurobiology, 48, 163–180.

    Article  CAS  PubMed  Google Scholar 

  • Stripling, R., Volman, S. F., & Clayton, D. F. (1997). Response modulation in the zebra finch neostriatum: Relationship to nuclear gene regulation. Journal of Neuroscience, 17, 3883–3893.

    CAS  PubMed  Google Scholar 

  • Tchernichovski, O., Lints, T., Mitra, P. P., & Nottebohm, F. (1999). Vocal imitation in zebra finches is inversely related to model abundance. Proceedings of the National Academy of Sciences of the USA, 96, 12901–12904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, R. R., Goodson, J. L., Ruscio, M. G., & Adkins-Regan, E. (1998). Role of the archistriatal nucleus taeniae in the sexual behavior of male Japanese quail (Coturnix japonica): A comparison of function with the medial nucleus of the amygdala in mammals. Brain, Behavior and Evolution, 51, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Tomaszycki, M. L., Sluzas, E. M., Sundberg, K. A., Newman, S. W., & DeVoogd, T. J. (2006). Immediate early gene (ZENK) responses to song in juvenile female and male zebra finches: Effects of rearing environment. Journal of Neurobiology, 66, 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  • Tremere, L. A., Jeong, J. K., & Pinaud, R. (2009). Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. Journal of Neuroscience, 29, 5949–5963.

    Article  CAS  PubMed  Google Scholar 

  • Tschöp, M., Smiley, D. L., & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407, 908–913.

    Article  PubMed  Google Scholar 

  • Vates, G. E., Broome, B. M., Mello, C. V., & Nottebohm, F. (1996). Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taeniopygia guttata). Journal of Comparative Neurology, 366, 613–642.

    Article  CAS  PubMed  Google Scholar 

  • Vélez, A., Gall, M. D., & Lucas, J. R. (2015). Seasonal plasticity in auditory processing of the envelope and temporal fine structure of sounds in three songbirds. Animal Behaviour, 103, 53–63.

    Article  Google Scholar 

  • Velho, T. A., Lu, K., Ribeiro, S., Pinaud, R., Vicario, D., & Mello, C. V. (2012). Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds. PLoS ONE, 7, e36276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas, A., Harding, C., McGowan, J., Snare, R., & Bogdan, D. (2008). Noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), treatment eliminates estrogenic effects on song responsiveness in female zebra finches (Taeniopygia guttata). Behavioral Neuroscience, 122, 1148–1157.

    Article  CAS  PubMed  Google Scholar 

  • Wade, J., Lampen, J., Qi, L., & Tang, Y. P. (2013). Norepinephrine inhibition in juvenile male zebra finches modulates adult song quality. Brain Research Bulletin, 90, 132–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, R. I., & Coolen, L. M. (1997). Integration of chemosensory and hormonal cues is essential for sexual behaviour in the male Syrian hamster: Role of the medial amygdaloid nucleus. Neuroscience, 78, 1027–1035.

    Article  CAS  PubMed  Google Scholar 

  • Wood, W. E., Lovell, P. V., Mello, C. V., & Perkel, D. J. (2011). Serotonin, via HTR2 receptors, excites neurons in a cortical-like premotor nucleus necessary for song learning and production. Journal of Neuroscience, 313, 13808–13815.

    Article  CAS  Google Scholar 

  • Woolley, S. M. (2012). Early experience shapes vocal neural coding and perception in songbirds. Developmental Psychobiology, 54, 612–631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada, H., Takeuchi, Y., & Sano, Y. (1984). Immunohistochemical studies on the serotonin neuron system in the brain of the chicken (Gallus domesticus). I. The distribution of the neuronal somata. Biogenic Amines, 1, 83–94.

    CAS  Google Scholar 

  • Yang, H. P., Wang, L., Han, L., & Wang, S. C. (2013). Nonsocial functions of hypothalamic oxytocin. International Scholarly Research Notices: Neuroscience, 2013, 179272. Retrieved from http://dx.doi.org/10.1155/2013/179272.

  • Yoder, K. M., Lu, K., & Vicario, D. S. (2012). Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches. Neuroreport, 23, 922–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinzow-Kramer, W. M., Horton, B. M., & Maney, D. L. (2014). Evaluation of reference genes for quantitative real-time-PCR in the brain, pituitary, and gonads of songbirds. Hormones and Behavior, 66, 267–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nathan James, Yuchen Hu, Susan Lyons, Camden MacDowell, Keith Sockman, Tony Tran, and Wendy Zinzow-Kramer for their contributions to the figures. The authors are grateful to Andy Bass and Joe Sisneros for the invitation to submit this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. Maney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maney, D.L., Rodriguez-Saltos, C.A. (2016). Hormones and the Incentive Salience of Bird Song. In: Bass, A., Sisneros, J., Popper, A., Fay, R. (eds) Hearing and Hormones. Springer Handbook of Auditory Research, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-26597-1_5

Download citation

Publish with us

Policies and ethics