Skip to main content

Lagrange Programming Neural Network for the \(l_1\)-norm Constrained Quadratic Minimization

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9491))

Included in the following conference series:

  • 2724 Accesses

Abstract

The Lagrange programming neural network (LPNN) is a framework for solving constrained nonlinear programm problems. But it can solve differentiable objective/contraint functions only. As the \(l_1\)-norm constrained quadratic minimization (L1CQM), one of the sparse approximation problems, contains the nondifferentiable constraint, the LPNN cannot be used for solving L1CQM. This paper formulates a new LPNN model, based on introducing hidden states, for solving the L1CQM problem. Besides, we discuss the stability properties of the new LPNN model. Simulation shows that the performance of the LPNN is similar to that of the conventional numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chua, L.O., Lin, G.N.: Nonlinear programming without computation. IEEE Trans. Circuits Syst. 31, 182–188 (1984)

    Article  MathSciNet  Google Scholar 

  2. Xiao, Y., Liu, Y., Leung, C.S., Sum, J., Ho, K.: Analysis on the convergence time of dual neural network-based kwta. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 676–682 (2012)

    Article  Google Scholar 

  3. Leung, C.S., Sum, J., Constantinides, A.G.: Recurrent networks for compressive sampling. Neurocomputing 129, 298–305 (2014)

    Article  Google Scholar 

  4. Gao, X.B.: Exponential stability of globally projected dynamics systems. IEEE Trans. Neural Netw. 14, 426–431 (2003)

    Article  Google Scholar 

  5. Hu, X., Wang, J.: A recurrent neural network for solving a class of general variational inequalities. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(3), 528–539 (2007)

    Article  Google Scholar 

  6. Zhang, S., Constantinidies, A.G.: Lagrange programming neural networks. IEEE Trans. Circuits Syst. II 39(7), 441–452 (1992)

    Article  Google Scholar 

  7. Leung, C.S., Sum, J., So, H.C., Constantinides, A.G., Chan, F.K.W.: Lagrange programming neural network approach for time-of-arrival based source localization. Neural Comput. Appl. 12, 109–116 (2014)

    Article  Google Scholar 

  8. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via \(l_1\) minimization. Proc. Nat. Acad. Sci. 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbert, A.C., Tropp, J.A.: Applications of sparse approximation in communications. In: Proceedings International Symposium on Information Theory ISIT 2005, pp. 1000–1004 (2005)

    Google Scholar 

  11. Rahmoune, A., Vandergheynst, P., Frossard, P.: Sparse approximation using m-term pursuit and application in image and video coding. IEEE Trans. Image Process. 21, 1950–1962 (2012)

    Article  MathSciNet  Google Scholar 

  12. Rozell, C.J., Johnson, D.H., Baraniuk, R.G., Olshausen, B.A.: Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 20(10), 2526–2563 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2007)

    Article  MathSciNet  Google Scholar 

  14. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The work was supported by a research grant from City University of Hong Kong (Project No.: 7004233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Sing Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, C.M., Feng, R., Leung, CS. (2015). Lagrange Programming Neural Network for the \(l_1\)-norm Constrained Quadratic Minimization. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9491. Springer, Cham. https://doi.org/10.1007/978-3-319-26555-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26555-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26554-4

  • Online ISBN: 978-3-319-26555-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics