Skip to main content

Design of an Adaptive Support Vector Regressor Controller for a Spherical Tank System

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9491))

Included in the following conference series:

Abstract

In this study, an adaptive support vector regressor (SVR) controller which has previously been proposed [1] is applied to control the liquid level in a spherical tank system. The variations in the cross sectional area of the tank depending on the liquid level is the main cause of nonlinearity in system. The parameters of the controller are optimized depending on the future behaviour of the system which is approximated via a seperate online SVR model of the system. In order to adjust controller parameters, the “closed-loop margin” which is calculated using the tracking error has been optimized. The performance of the proposed method has been examined by simulations carried out on a nonlinear spherical tank system, and the results reveal that the SVR controller together with SVR model leads to good tracking performance with small modeling, transient state and steady state errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uçak, K., Günel, G.Ö.: An adaptive support vector regressor controller for nonlinear systems. Soft Comput. (2015). (Article in Press)

    Google Scholar 

  2. Aström, K.J., Wittenmark, B.: Adaptive Control. Dover Publications, Mineola (2008)

    Google Scholar 

  3. Iplikci, S.: A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int. J. Robust Nonlinear Control 20(13), 1483–1501 (2010). doi:10.1002/rnc.1524

    MathSciNet  MATH  Google Scholar 

  4. Shang, W.F., Zhao, S.D., Shen, Y.J.: Adaptive PID controller based on online LSSVM identification. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2008), pp. 694–698. IEEE Press, Xian (2008). doi:10.1109/AIM.2008.4601744

  5. Zhao, J., Li, P., Wang, X.S.: Intelligent PID controller design with adaptive criterion adjustment via least squares support vector machine. In: 21st Chinese Control and Decision Conference (CCDC 2009), pp. 7–12. IEEE Press, Guilin (2009)

    Google Scholar 

  6. Yuan, X.F., Wang, Y.N., Wu, L.H.: Composite feedforward-feedback controller for generator excitation system. Nonlinear Dyn. 54(4), 355–364 (2008). doi:10.1007/s11071-008-9334-6

    Article  MATH  Google Scholar 

  7. Liu, X., Yi, J., Zhao, D.: Adaptive inverse control system based on least squares support vector machines. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 48–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Wang, H., Pi, D.Y., Sun, Y.X.: Online SVM regression algorithm-based adaptive inverse control. Neurocomputing 70(4–6), 952–959 (2007). doi:10.1016/j.neucom.2006.10.021

    Article  Google Scholar 

  9. Yuan, X.F., Wang, Y.N., Wu, L.H.: Adaptive inverse control of excitation system with actuator uncertainty. Neural Process. Lett. 27(2), 125–136 (2008). doi:10.1007/s11063-007-9064-7

    Article  Google Scholar 

  10. Iplikci, S.: Online trained support vector machines-based generalized predictive control of non-linear systems. Int. J. Adapt. Control Signal Process. 20(10), 599–621 (2006). doi:10.1002/acs.919

    Article  MathSciNet  MATH  Google Scholar 

  11. Iplikci, S.: Support vector machines-based generalized predictive control. Int. J. Robust Nonlinear Control 16(17), 843–862 (2006). doi:10.1002/rnc.1094

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Z.Y., Wang, X.F.: Nonlinear generalized predictive control based on online SVR. In: 2nd International Symposium on Intelligent Information Technology Application, pp. 1105–1109. IEEE Press, Shanghai (2008)

    Google Scholar 

  13. Shin, J., Kim, H.J., Park, S., Kim, Y.: Model predictive flight control using adaptive support vector regression. Neurocomputing 73(4–6), 1031–1037 (2010). doi:10.1016/j.neucom.2009.10.002

    Article  Google Scholar 

  14. Ma, J., Theiler, J., Perkins, S.: Accurate online support vector regression. Neural Comput. 15(11), 2683–2703 (2003). doi:10.1162/089976603322385117

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Uçak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Uçak, K., Öke Günel, G. (2015). Design of an Adaptive Support Vector Regressor Controller for a Spherical Tank System. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9491. Springer, Cham. https://doi.org/10.1007/978-3-319-26555-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26555-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26554-4

  • Online ISBN: 978-3-319-26555-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics