Skip to main content

Nondestructive Detection of an Optical Photon

  • Chapter
  • First Online:
Book cover A Controlled Phase Gate Between a Single Atom and an Optical Photon

Part of the book series: Springer Theses ((Springer Theses))

  • 507 Accesses

Abstract

This chapter describes the nondestructive detection of optical photons using the controlled phase gate mechanism explained in Sect. 1.2 and Chap. 4. The contents of the following sections have been published in [1]: Nondestructive Detection of an Optical Photon. Reiserer et al. Science 342, 1349 (2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Reiserer, S. Ritter, G. Rempe, Nondestructive detection of an optical photon. Science 342(6164), 1349–1351 (2013). doi:10.1126/science.1246164. http://www.sciencemag.org/content/342/6164/1349

    Google Scholar 

  2. P. Grangier, J.A. Levenson, J.-P. Poizat. Quantum non-demolition measurements in optics. Nature 396(6711), 537–542 (1998). ISSN: 0028-0836. doi:10.1038/25059. http://www.nature.com/nature/journal/v396/n6711/abs/396537a0.html

    Google Scholar 

  3. H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control, 00000. (Cambridge University Press, 2010). ISBN: 978-0-521-80442-4

    Google Scholar 

  4. N. Gisin et al., Quantum cryptography. Rev. Mod. Phys 74(1), 145–195 (2002). doi:10.1103/RevModPhys.74.145. http://link.aps.org/doi/10.1103/RevModPhys.74.145

    Google Scholar 

  5. N. Gisin, R. Thew, Quantum communication. Nature Photonics 1(3), 165–171 (2007), 00356. ISSN: 1749-4885. doi:10.1038/nphoton.2007.22. http://www.nature.com/nphoton/journal/v1/n3/abs/nphoton.2007.22.html

    Google Scholar 

  6. J.L. O’Brien. Optical Quantum Computing. Science 318(5856), 1567–1570 (2007), 00304. doi:10.1126/science.1142892. http://www.sciencemag.org/content/318/5856/1567.abstract

    Google Scholar 

  7. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nature Photonics 3(12), 687–695 (2009). ISSN: 1749-4885. doi:10.1038/nphoton.2009.229. http://dx.doi.org/10.1038/nphoton.2009.229

    Google Scholar 

  8. J.I. Cirac et al., Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78(16), 3221–3224 (1997). doi:10.1103/PhysRevLett.78.3221. http://link.aps.org/doi/10.1103/PhysRevLett.78.3221

    Google Scholar 

  9. H. J. Kimble, The quantum internet. Nature 453(7198), 1023–1030 (2008). ISSN:0028-0836. doi:10.1038/nature07127. http://dx.doi.org/10.1038/nature07127

    Google Scholar 

  10. L.-M. Duan, C. Monroe, Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010). doi:10.1103/RevModPhys.82.1209. http://link.aps.org/doi/10.1103/RevModPhys.82.1209

    Google Scholar 

  11. S. Ritter et al. An elementary quantum network of single atoms in optical cavities. Nature 484(7393) 195–200 (2012). ISSN: 0028-0836. doi:10.1038/nature11023. http://www.nature.com/nature/journal/v484/n7393/abs/nature11023.html

    Google Scholar 

  12. L.-M. Duan, H.J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(12), 127902 (2004), 00427. doi:10.1103/PhysRevLett.92.127902. http://link.aps.org/doi/10.1103/PhysRevLett.92.127902

  13. J. Cho, H.-W. Lee, Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95(16), 160501 (2005). doi:10.1103/PhysRevLett.95.160501. http://link.aps.org/doi/10.1103/PhysRevLett.95.160501

  14. J. Bochmann et al., Lossless state detection of single neutral atoms. Phys. Rev. Lett. 104(20), 203601 (2010), 00051. doi:10.1103/PhysRevLett.104.203601. http://link.aps.org/doi/10.1103/PhysRevLett.104.203601

  15. W.C. et al., All-optical switch and transistor gated by one stored photon. Science 341(6147), 768–770. (2013), 00029. ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1238169. http://www.sciencemag.org/content/341/6147/768

    Google Scholar 

  16. L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037–1069 (2005). doi:10.1103/RevModPhys.76.1037. http://link.aps.org/doi/10.1103/RevModPhys.76.1037

    Google Scholar 

  17. Y.Colombe et al., Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip”. In: Nature 450(7167), 272–276 (2007). ISSN: 0028-0836. doi:10.1038/nature06331. http://www.nature.com/nature/journal/v450/n7167/abs/nature06331.html

    Google Scholar 

  18. B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319(5866), 1062-1065 (2008), 00282. doi:10.1126/science.1152261. http://www.sciencemag.org/content/319/5866/1062.abstract

    Google Scholar 

  19. C. Junge et al., Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110(21), 213604 (2013). doi:10.1103/PhysRevLett.110.213604. http://link.aps.org/doi/10.1103/PhysRevLett.110.213604

  20. J. D. Thompson et al., Coupling a single trapped atom to a nanoscale optical cavity. Science 340(6137), 1202–1205 (2013). ISSN: 0036-8075, 1095-9203. doi:10.1126/science.1237125. http://www.sciencemag.org/content/340/6137/1202

    Google Scholar 

  21. R.H. Hadfield, Single-photon detectors for optical quantum information applications. Nature Photonics 3(12), 696-705 (2009). ISSN: 1749-4885. doi:10.1038/nphoton.2009.230. http://www.nature.com/nphoton/journal/v3/n12/abs/nphoton.2009.230.html

    Google Scholar 

  22. M.D. Eisaman et al., Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101-25 (2011). ISSN: 00346748. doi:10.1063/1.3610677. http://rsi.aip.org/resource/1/rsinak/v82/i7/p071101_s1

    Google Scholar 

  23. F. Marsili et al., Detecting single infrared photons with 93% system efficiency. Nature Photonics 7(3), 210–214 (2013). ISSN: 1749-4885.doi:10.1038/nphoton.2013.13. http://www.nature.com/nphoton/journal/v7/n3/abs/nphoton.2013.13.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Reiserer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reiserer, A. (2016). Nondestructive Detection of an Optical Photon. In: A Controlled Phase Gate Between a Single Atom and an Optical Photon. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26548-3_5

Download citation

Publish with us

Policies and ethics