Skip to main content

Online Training of an Opto-Electronic Reservoir Computer

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Abstract

Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals. Its analog implementations equal and sometimes outperform other digital algorithms on a series of benchmark tasks. Their performance can be increased by switching from offline to online training method. Here we present the first online trained opto-electronic reservoir computer. The system is tested on a channel equalisation task and the algorithm is executed by an FPGA chip. We report performances close to previous implementations and demonstrate the benefits of online training on a non-stationary task that could not be easily solved using offline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The 2006/07 forecasting competition for neural networks & computational intelligence (2006). http://www.neural-forecasting-competition.com/NN3/. Accessed 21 February 2014

  2. Antonik, P., Smerieri, A., Duport, F., Haelterman, M., Massar, S.: FPGA implementation of reservoir computing with online learning. In: Benelearn 2015: The 24th Belgian-Dutch Conference on Machine Learning (2015)

    Google Scholar 

  3. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  4. Arfken, G.B.: Mathematical Methods for Physicists. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  5. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2012)

    Article  Google Scholar 

  6. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012)

    Article  Google Scholar 

  7. Hammer, B., Schrauwen, B., Steil, J.J.: Recent advances in efficient learning of recurrent networks. In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 213–216, Bruges (Belgium), April 2009

    Google Scholar 

  8. Haynes, N.D., Soriano, M.C., Rosin, D.P., Fischer, I., Gauthier, D.J.: Reservoir computing with a single time-delay autonomous Boolean node, November 2014. arXiv preprint arXiv:1411.1398

  9. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  10. Larger, L., Soriano, M., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera, L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012)

    Article  Google Scholar 

  11. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comp. Sci. Rev. 3, 127–149 (2009)

    Article  MATH  Google Scholar 

  12. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural comput. 14, 2531–2560 (2002)

    Article  MATH  Google Scholar 

  13. Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y.K., Larger, L.: Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev. Lett. 108, 244101 (2012)

    Article  Google Scholar 

  14. Mathews, V.J., Lee, J.: Adaptive algorithms for bilinear filtering. In: SPIE’s 1994 International Symposium on Optics, Imaging, and Instrumentation, pp. 317–327. International Society for Optics and Photonics (1994)

    Google Scholar 

  15. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M., Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

    Article  Google Scholar 

  16. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 22, 131–144 (2011)

    Article  Google Scholar 

  17. Schrauwen, B., D’Haene, M., Verstraeten, D., Campenhout, J.V.: Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 511–523 (2008)

    Article  Google Scholar 

  18. Smerieri, A., Duport, F., Paquot, Y., Schrauwen, B., Haelterman, M., Massar, S.: Analog readout for optical reservoir computers. In: Advances in Neural Information Processing Systems 25, pp. 944–952. Curran Associates Inc. (2012)

    Google Scholar 

  19. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition with large hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307–2315 (2010)

    Google Scholar 

  20. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Verstraeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014)

    Article  Google Scholar 

  21. Vinckier, Q., Duport, F., Smerieri, A., Vandoorne, K., Bienstman, P., Haelterman, M., Massar, S.: High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2(5), 438–446 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by Interuniversity Attraction Poles program of the Belgian Science Policy Office, under grant IAP P7-35 photonics@be and by the Fonds de la Recherche Scientifique FRS-FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Antonik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S. (2015). Online Training of an Opto-Electronic Reservoir Computer. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics