Adaptive Differential Evolution Based Feature Selection and Parameter Optimization for Advised SVM Classifier

  • Ammara MasoodEmail author
  • Adel Al-Jumaily
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9489)


This paper proposes a pattern recognition model for classification. Adaptive differential evolution based feature selection is used for dimensionality reduction and a new advised version of support vector machine is used for evaluation of selected features and for the classification. The tuning of the control parameters for differential evolution algorithm, parameter value optimization for support vector machine and selection of most relevant features form the datasets all are done together. This helps in dealing with their interdependent effect on the overall performance of the learning model. The proposed model is tested on some latest machine learning medical datasets and compared with some well-developed methods in literature. The proposed model provided quite convincing results on all the test datasets.


Feature selection Optimization Classification Support vector machine Differential evolution Dimensionality reduction 


  1. 1.
    Chandrashekar, G.S., Ferat, S.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)CrossRefGoogle Scholar
  2. 2.
    Khalid, S., Khalil, T., Nasreen, S.: A survey of feature selection and feature extraction techniques in machine learning. In: Science and Information Conference (SAI) (2014)Google Scholar
  3. 3.
    Nakariyakul, S., Casasent, D.P.: Improved forward floating selection algorithm for feature subset selection. In: International Conference on Wavelet Analysis and Pattern Recognition (2008)Google Scholar
  4. 4.
    Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, New York (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Huang, C.-L.W., Chieh-Jen, A.: GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)CrossRefGoogle Scholar
  6. 6.
    Khushaba, R.N., Ahmed A., Al-Jumaily, A.: Swarm intelligence based dimensionality reduction for myoelectric control. In: 3rd International Conference on in Intelligent Sensors, Sensor Networks and Information (2007)Google Scholar
  7. 7.
    Al-Ani, A.A., Akram Khushaba, R.N.: Feature subset selection using differential evolution and a wheel based search strategy. Swarm and Evol. Comput. 9, 15–26 (2013)CrossRefGoogle Scholar
  8. 8.
    Khushaba, R.N., Ahmed, A., Al-Jumaily, A.: Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst. Appl. 38(9), 11515–11526 (2011)CrossRefGoogle Scholar
  9. 9.
    Bhadra, T., Bandyopadhyay, S., Maulik, U.: Differential evolution based optimization of SVM parameters for meta classifier design. Procedia Technol. 4, 50–57 (2012)CrossRefGoogle Scholar
  10. 10.
    Maali, Y., Al-Jumaily, A.: Self-advising support vector machine. Knowl. Based Syst. 52, 214–222 (2013)CrossRefGoogle Scholar
  11. 11.
    Islam, S.M.D., Swagatam, G., Saurav, R., Subhrajit, S., Ponnuthurai, N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 482–500 (2012)CrossRefGoogle Scholar
  12. 12.
    Price, K.S., Rainer, M., Lampinen, J.A.: Differential Evolution: a Practical Approach to Global Optimization. Springer Science & Business Media, Berlin (2006)zbMATHGoogle Scholar
  13. 13.
    Das, S.S., Ponnuthurai, N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  14. 14.
    Kumar, P., Pant, M.: A self adaptive differential evolution algorithm for global optimization. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 103–110. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Feature subset selection using differential evolution. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 103–110. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Bharathi, P.T., Subashini, D.P.: Optimal feature subset selection using differential evolution and extreme learning machine. Int. J. Sci. Res. 3(7), 1898–1905 (2012)Google Scholar
  17. 17.
    Masood, A., Al-Jumaily, A., Anam, K.: Texture analysis based automated decision support system for classification of skin cancer using SA-SVM. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014, Part II. LNCS, vol. 8835, pp. 101–109. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Haupt, R.L.H., Sue, E.: Practical Genetic Algorithms. Wiley, New York (2004)zbMATHGoogle Scholar
  19. 19.
    Firpi, H.A.G., Erik, D.: Swarmed feature selection. In: Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop (2004)Google Scholar
  20. 20.
    Khushaba, R.N., AlSukker, A., Al-Ani, A., Al-Jumaily, A., Zomaya, A.Y.: A novel swarm based feature selection algorithm in multifunction myoelectric control. J. Intell. Fuzzy Syst. 20(4–5), 175–185 (2009)zbMATHGoogle Scholar
  21. 21.
    Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1424–1437 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Electrical, Mechanical and Mechatronic EngineeringUniversity of TechnologySydneyAustralia

Personalised recommendations