Advertisement

Optimum Colour Space Selection for Ulcerated Regions Using Statistical Analysis and Classification of Ulcerated Frames from WCE Video Footage

  • Shipra SumanEmail author
  • Nicolas Walter
  • Fawnizu Azmadi Hussin
  • Aamir Saeed Malik
  • Shiaw Hooi Ho
  • Khean Lee Goh
  • Ida Hilmi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9489)

Abstract

The Wireless Capsule Endoscopy (WCE) is a painless and non-invasive procedure that allows clinicians to visualize the entire Gastrointestinal Tract (GIT) and detect various abnormalities. During the inspection of GIT, numerous images are acquired at a rate of approximately 2 frames per second (fps) and recorded into a video footage (containing about 55,000 images). Inspecting the WCE video is very tedious and time consuming for the doctors, resulting in limited application of WCE. Therefore, it is crucial to develop a computer aided intelligent algorithm to process the huge number of WCE frames. This paper proposes an ulcerated frame detection method based on RGB and CIE Lab colour spaces. In order to select and provide the classifier with the bands containing most ulcer information, a statistical analysis of ulcerated images pixel based is proposed. The resulting band selection will enhance the classification results and increase the sensitivity and specificity with regards to ulcerated frame identification.

Keywords

WCE image processing Ulcer frame detection Statistical analysis Colour spaces selection Classification 

Notes

Acknowledgements

This research work is supported by Graduate Assistantship (GA) scheme, Universiti Teknologi PETRONAS, Perak, Malaysia. We would like to thank our collaborators in UMMC for their endless help and support in the realisation of this project.

References

  1. 1.
    Avgerinos, A., Kalantzis, N.: Endoscopy with wireless capsule (in Greek: Ενδοσκόπηση με ασύρματη κάψουλα), Athens: Vita (2006)Google Scholar
  2. 2.
    Lai, L.H., Wong, G.L., Lau, J.Y., Sung, J.J., Leung, W.K.: Initial experience of real-time capsule endoscopy in monitoring progress of the videocapsule through the upper GI tract. Gastrointest Endosc. 66, 1211–1214 (2007)CrossRefGoogle Scholar
  3. 3.
    Kodogiannis, V.S., Boulougoura, M., Lygouras, J.N., Petrounias, I.: A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images. Neurocomputing 70, 704–717 (2007)CrossRefGoogle Scholar
  4. 4.
    Iakovidis, D.K.: Unsupervised summarization of capsule endoscopy video. In: Proceedings of the 4th International Conference IEEE on Intelligent Systems, vol. 1, pp. 3-15–3-20, September 2008Google Scholar
  5. 5.
    Ghoshal, U.C.: Capsule Endoscopy: A New Era of Gastrointestinal Endoscopy. INTECH Open Access Publisher (2013)Google Scholar
  6. 6.
    Suman, S., Hussin, F.A., Malik, A.S., Walter, N., Goh, K.L., Hilmi, I., Ho, S.H.: Image enhancement using geometric mean filter and gamma correction for WCE Images. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014, Part III. LNCS, vol. 8836, pp. 276–283. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Bourbakis, N.: Detecting abnormal patterns in WCE images. In: 5th IEEE Symposium on BIBE, pp. 232–238, October 2005Google Scholar
  8. 8.
    Dhandra, B.V., Hegadi, R., Hangarge, M., Malelath, V.S.: Analysis of abnormality in endoscopic images using combined HSI color space and watershed segmentation. In: 18th International Conference on IEEE ICPR, vol. 4, pp. 695–698, August 2006Google Scholar
  9. 9.
    Ameling, S., Wirth, S., Paulus, D., Lacey, G., Vilarino, F.: Texture-based polyp detection in colonoscopy. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung fur die Medizin, pp. 346–350. Springer, Berlin (2009)Google Scholar
  10. 10.
    Iakovidis, D.K., Maroulis, D., Karkanis, S.A.: An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comp. Biol. Med. 36, 1084–1103 (2006)CrossRefGoogle Scholar
  11. 11.
    Meng, M.Q.-H., Li, B.: Computer aided detection of bleeding in capsule endoscopy images. In: Canadian Conference on Electrical and Computer Engineering, pp. 1963–1966, May 2008Google Scholar
  12. 12.
    Jung, Y.S., Kim, Y.H.., Lee, D.H., Kim, J.H.: Active blood detection in a high resolution capsule endoscopy using color spectrum transformation. In: International Conference on IEEE on Biomedical Engineering and Informatics, vol. 1, pp. 859–862, May 2008Google Scholar
  13. 13.
    Cunha, J.P.S., Coimbra, M.: MPEG-7 visual descriptors contributions for automated feature extraction in capsule endoscopy. IEEE Trans. Circuits Syst. Video Technol. 16, 628–637 (2006)CrossRefGoogle Scholar
  14. 14.
    Gan, T., Wu, J.-C., Rao, N.-N., Chen, T., Liu, B.: A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World J. Gastroenterol. 14(45), 6929–6935 (2008)CrossRefGoogle Scholar
  15. 15.
    Meng, M.Q.-H., Li, B.: Ulcer recognition in capsule endoscopy images by texture features. In: Proceedings of 7th IEEE World Congress on Intelligent Control and Automation, pp. 234–239 (2008)Google Scholar
  16. 16.
    Meng, M.Q.-H., Li, B.: Computer-based detection of bleeding and ulcer in wireless capsule endoscopic images by chromaticity moments. Comp. Biol. Med. 39, 141–147 (2009)CrossRefGoogle Scholar
  17. 17.
    Peptic Ulcers, Harvard Medical School, Well-Connected reports, September 2001Google Scholar
  18. 18.
    eMedicineHealth—Practical Guide to Health. http://www.emedicinehealth.com/peptic_ulcers/article_em.htm. January 2009
  19. 19.
    Karnam, U.S., Rosen, C.M., Raskin, J.B.: Small bowel ulcers. Curr. Treat. Options Gastroenterol. J. 4(1), 15–21 (2001)CrossRefGoogle Scholar
  20. 20.
    Joblove, G.H., Greenberg, D.: Color spaces for computer graphics. In: ACM Siggraph Computer Graphics. ACM (1978)Google Scholar
  21. 21.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1989)zbMATHGoogle Scholar
  22. 22.
    Liu, X., et al.: A new approach to detecting ulcer and bleeding in Wireless capsule endoscopy images. In: 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE (2012)Google Scholar
  23. 23.
    Karargyris, A., Bourbakis, N.: Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans. Biomed. Eng. 58(10), 2777–2786 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shipra Suman
    • 1
    Email author
  • Nicolas Walter
    • 1
  • Fawnizu Azmadi Hussin
    • 1
  • Aamir Saeed Malik
    • 1
  • Shiaw Hooi Ho
    • 2
  • Khean Lee Goh
    • 2
  • Ida Hilmi
    • 2
  1. 1.Electrical and Electronic EngineeringUniversiti Teknologi PETRONASTronohMalaysia
  2. 2.Department of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations