Advertisement

Unsupervised Land Classification by Self-organizing Map Utilizing the Ensemble Variance Information in Satellite-Borne Polarimetric Synthetic Aperture Radar

  • Yuto Takizawa
  • Fang Shang
  • Akira HiroseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9489)

Abstract

Polarimetric satellite-borne synthetic aperture radar is expected to provide land usage information globally and precisely. In this paper, we propose a two-stage unsupervised-learning land state classification system using a self-organizing map (SOM) based on the ensemble variance. We find that the Poincare sphere parameters representing the polarization state of scattered wave have specific features of the land state, in particular, in their dispersion (or ensemble variance). We present two-stage clustering procedure to utilize the dispersion features of the clusters as well as the mean values. Experiments demonstrate its high capability of self-organizing and discovering classification based on the polarimetric scattering features representing the land states.

Keywords

Polarimetric synthetic aperture radar Stokes vector Unsupervised classification 

References

  1. 1.
    Touzi, R., Goze, S., Le Toan, T., Lopes, A., Mougin, E.: Polarimetric discriminators for SAR images. IEEE Trans. Geosci. Remote Sens. 30(5), 973–980 (1992)CrossRefGoogle Scholar
  2. 2.
    Ulaby, F.T., Held, D., Dobson, M.C., McDonald, K.C., Senior, T.B.A.: Relating polarization phase differencpolarSAR signals to scene properties. IEEE Trans. Geosci. Remote Sens. GE 25(1), 83–92 (1987)CrossRefGoogle Scholar
  3. 3.
    Evans, D.L., Farr, T.G., van Zyl, J.J., Zebker, H.A.: Radar polarimetry: analysis tools and applications. IEEE Trans. Geosci. Remote Sens. 26(6), 774–789 (1988)CrossRefGoogle Scholar
  4. 4.
    Touzi, R., Raney, R.K., Charbonneau, F.: On the use of permanent symmetric scatterers for ship characterization. IEEE Trans. Geosci. Remote Sens. 42(10), 2039–2045 (2004)CrossRefGoogle Scholar
  5. 5.
    Shirvany, R., Chabert, M., Tourneret, J.Y.: Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-PolSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 885–892 (2012)CrossRefGoogle Scholar
  6. 6.
    Yamaguchi, Y., Moriyama, T., Ishido, M., Yamada, H.: Four component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 43(8), 1699–1706 (2005)CrossRefGoogle Scholar
  7. 7.
    Shang, F., Hirose, A.: Averaged stokes vector based polarimetric sar data interpretation. IEEE Trans. Geosci. Remote Sens. 53, 4536–4547 (2015)CrossRefGoogle Scholar
  8. 8.
    Shang, F., Hirose, A.: Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space. IEEE Trans. Geosci. Remote Sens. 52(9), 5693–5703 (2014)CrossRefGoogle Scholar
  9. 9.
    Hara, T., Hirose, A.: Plastic mine detecting system using complex-valued self-organizing map that deals with multiple-frequency interferometric images. Neural Netw. 17(8–9), 1201–1210 (2004)CrossRefGoogle Scholar
  10. 10.
    Masuyama, S., Hirose, A.: Walled LTSA array for rapid, high spatial resolution, and phase sensitive imaging to visualize plastic landmines. IEEE Trans. Geosci. Remote Sens. 45(8), 2536–2543 (2007)CrossRefGoogle Scholar
  11. 11.
    Masuyama, S., Yasuda, K., Hirose, A.: Multiple mode selection of walled-ltsa array elements for high resolution imaging to visualize antipersonnel plastic landmines. IEEE Geosci. Remote Sens. Lett. 5(4), 745–749 (2008)CrossRefGoogle Scholar
  12. 12.
    Nakano, Y., Hirose, A.: Adaptive identification of landmine class by evaluating the total degree of conformity of ring-SOM. Aust. J. Intell. Inf. Process. Syst. 12, 23–28 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information SystemsThe University of TokyoBunkyo-kuJapan

Personalised recommendations