Possibilistic Information Retrieval Model Based on Relevant Annotations and Expanded Classification

  • Fatiha NaouarEmail author
  • Lobna Hlaoua
  • Mohamed Nazih Omri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9489)


The heterogeneity and the great mass of information found on the web today require an information treatment before being used. The annotations, like all other information, must be filtered to determine those that are relevant. The new concept of “relevant annotation” can be then, considered as a new source of evidence. In addition to the vast amount of annotations, we notice that annotations express generally brief ideas using some words that they cannot be comprehensible independently of his context. This is why, we thought to classify it in clusters annotations sharing the same context and semantically related. In this paper, we propose a new model based on clustering for the classification and probabilistic model for the filtering. In the experiments, we tried to consider the relevant annotation classes as a new source of information able to improve the collaborative information retrieval.


Relevant annotation Expanded classification Filtering Collaborative information retrieval 


  1. 1.
    Agosti, M., Ferro, N.: Annotations as context for searching documents. In: Crestani, F., Ruthven, I. (eds.) CoLIS 2005. LNCS, vol. 3507, pp. 155–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Aha, D.W. (ed.): Lazy Learning. Kluwer Academic Publishers, Norwell (1997)zbMATHGoogle Scholar
  3. 3.
    Benzécri, J.P.: L’analyse des données. Dunod, Paris (1973)zbMATHGoogle Scholar
  4. 4.
    Cabanac, G.: Annotation collective dans le contexte RI : définition d’une plate-forme pour expérimenter la validation sociale. In Conférence en Recherche d’Information et Applications, CORIA. pp. 385–392 (2008)Google Scholar
  5. 5.
    Celeux, G., Diday, E., Govaert, G.: Classification automatique de données environnement statistique et informatique. Dunod, Informatique (1989)Google Scholar
  6. 6.
    Chang, Y.K., Cirillo, C., Razon, J.: Evaluation of feedback retrieval using modified freezing, residual collection and test and control groups. In: the SMART Retrieval System- Experiments in Automatic Document Processing, pp. 355–370 (1971)Google Scholar
  7. 7.
    Chebil, W., Soualmia, L.F., Omri, M.N., Darmoni, S.J.: Indexing biomedical documents with a possibilistic network. J. Assoc. Inf. Sci. Technol. (2015). doi: 10.1002/asi.23435,66(2) Google Scholar
  8. 8.
    Dinet, J.: Deux têtes cherchent mieux qu’une? In: Medialog, 63 (2007)Google Scholar
  9. 9.
    Frommholz, I., Fuhr, N.: Probabilistic, object-oriented logics for annotation-based retrieval in digital libraries. In: JCDL 2006: Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries, ACM Press, New York, NY, USA, pp. 55–64 (2006)Google Scholar
  10. 10.
    Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: an open RDF infrastructure for shared Web annotations. Comp. Netw. 32(5), 589–608 (2002)CrossRefGoogle Scholar
  11. 11.
    Mokhtari, N., Dieng-Kuntz, R.: Extraction et exploitation des annotations contextuelles. In: Proceedings Extraction et gestion des connaissances EGC (2008)Google Scholar
  12. 12.
    Naouar, F., Hlaoua, L., Omri, M.N.: Possibilistic model for relevance feedback in collaborative information retrieval. Int. J. Web Appl. IJWA 4(2), 78–86 (2012)Google Scholar
  13. 13.
    Naouar, F., Hlaoua, L., Omri, M.N., Relevance feedback for collaborative retrieval based on semantic annotations. In: The International Conference on Information and Knowledge Engineering (IKE 2013), pp. 54–60 (2013)Google Scholar
  14. 14.
    Omri, M.N., Chouigui, N.: Measure of similarity between fuzzy concepts for identification of fuzzy user’s requests in fuzzy semantic networks. Int. J. Uncertainty Fuzziness Knowl. Based Syst. (IJUFKS) 9(6), 743–748 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Omri M.N., Chouigui, N., Linguistic variables definition by membership function and measure of similarity. In: Proceedings of the 14th International Conference on Systems Science, vol. 2, pp. 264–273 (2001)Google Scholar
  16. 16.
    Omri, M.N.: Pertinent knowledge extraction from a semantic network: application of fuzzy sets theory. Int. J. Artif. Intell. IJAIT 13(3), 705–719 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Omri, M.N.: Effects of terms recognition mistakes on requests processing for interactive information retrieval. Int. J. Inf. Retrieval Res. IJIRR 2(3), 19–35 (2012)CrossRefGoogle Scholar
  18. 18.
    Omri, M.N.: Système interactif flou d’aide à l’utilisation de dispositifs techniques: SIFADE. Thèse de l’université Paris VI, Paris (1994)Google Scholar
  19. 19.
    Omri, M.N., Tijus, C.A.: Uncertain and approximative knowledge representation in fuzzy semantic networks. In: The Twelfth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE-99) (1999)Google Scholar
  20. 20.
    Omri, M.N., Chenaina, T.: Uncertain and approximate knowledge representation to reasoning on classification with a fuzzy networks based system. In: Fuzzy Systems Conference Proceedings, FUZZ-IEEE 1999, vol. 3, pp. 1632–1637 (1999)Google Scholar
  21. 21.
    Syed, N.A., Liu, H., Sung, K.K.: Incremental learning with support vector machines. In: Proceedings of International Joint Conference on Artificial intelligence (IJCAI) (1999)Google Scholar
  22. 22.
    Tryon, R.C.: Cluster Analysis. Edwards Brothers, Ann Arbor (1939)Google Scholar
  23. 23.
    Usunier, N., Bottou, L.: Guarantees for approximate incremental SVMs. In: International Conference on Artificial Intelligence and Statistics, pp. 884–891 (2010)Google Scholar
  24. 24.
    Vassef, H., Li, C.S, Castelli, V.: Combining fast search and learning for fast similarity search. In: Proceedings of SPIE. The International Society for Optical Engineering, vol. 3972, pp. 32–42 (2000)Google Scholar
  25. 25.
    Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. (JMLR) 10, 207–244 (2009)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fatiha Naouar
    • 1
    Email author
  • Lobna Hlaoua
    • 1
  • Mohamed Nazih Omri
    • 1
  1. 1.Department of Computer Sciences Faculty of Sciences of MonastirMARS Research Unit, University of MonastirMonastirTunisia

Personalised recommendations