A Framework for Online Inter-subjects Classification in Endogenous Brain-Computer Interfaces

  • Sami DalhoumiEmail author
  • Gérard Dray
  • Jacky Montmain
  • Stéphane Perrey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9489)


Inter-subjects classification and online adaptation techniques have been actively explored in the brain-computer interfaces (BCIs) research community during the last years. However, few works tried to conceive classification models that take advantage of both techniques. In this paper we propose an online inter-subjects classification framework for endogenous BCIs. Inter-subjects classification is performed using a weighted average ensemble in which base classifiers are learned using data recorded from different subjects and weighted according to their accuracies in classifying brain signals of current BCI user. Online adaptation is performed by updating base classifiers’ weights in a semi-supervised way based on ensemble predictions reinforced by interaction error-related potentials (iErrPs). The effectiveness of our approach is demonstrated using two electroencephalography (EEG) data sets and a previously proposed procedure for simulating interaction error potentials.


Brain-computer interfaces Inter-subjects classification Online adaptation Weighted average ensembles 


  1. 1.
    McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for communication and control. Commun. ACM 54(5), 60–66 (2011)CrossRefGoogle Scholar
  2. 2.
    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12, 1211–1279 (2012)CrossRefGoogle Scholar
  3. 3.
    Lotte, F., Guan, C.: Learning from other subjects helps reducing brain-computer interface calibration time. In: International Conference on Audio Speech and Signal Processing (ICASSP), pp. 614–617 (2010)Google Scholar
  4. 4.
    Tu, W., Sun, S.: A subject transfer framework for EEG classification. Neurocomputing 82, 109–116 (2011)CrossRefGoogle Scholar
  5. 5.
    Liyanage, S.R., Guan, C., Zhan, H., Ang, K.K., Xu, J., Lee, T.H.: Dynamically weighted ensemble classification for non-stationary EEG processing. J. Neural Eng. 10(3), 036007 (2013)CrossRefGoogle Scholar
  6. 6.
    Dalhoumi, S., Dray, G., Montmain, J., Derosière, G., Perrey, S.: An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing. In: 7th International IEEE EMBS Neural Engineering Conference (2015)Google Scholar
  7. 7.
    Ferrez, P.W., Del R Millan, J.: Error-related EEG potentials generated during simulated brain–computer interaction. IEEE Trans. Biomed. Eng. 55(3), 923–929 (2008)Google Scholar
  8. 8.
    Llera, A., Van Gerven, M.A.J., Gomez, V., Jensen, O., Kappen, H.J.: On the use of interaction error potentials for adaptive brain computer interfaces. Neural Netw. 24(10), 1120–1127 (2011)CrossRefGoogle Scholar
  9. 9.
    Zeyl, T.J., Chau, T.: A case study of linear classifiers adapted using imperfect labels derived from human event-related potentials. Pattern Recogn. Lett. 37, 54–62 (2014)CrossRefGoogle Scholar
  10. 10.
    Blankertz, B.: BCI Competition IV. (2008)
  11. 11.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  12. 12.
    Steyrl, D., Scherer, R., Forstner, O., Muller-Putz, G.R.: Motor imagery brain-computer interfaces: random forests vs regularized LDA – non-linear beats linear. In: 6th International Brain-Computer Interface Conference (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sami Dalhoumi
    • 1
    Email author
  • Gérard Dray
    • 1
  • Jacky Montmain
    • 1
  • Stéphane Perrey
    • 2
  1. 1.Laboratoire d’Informatique et d’Ingénierie de Production (LGI2P)Ecole des Mines d’AlèsNîmesFrance
  2. 2.Movement to Health (M2H)Montpellier University, EuromovMontpellierFrance

Personalised recommendations