Skip to main content

Invasive Angiographic Assessment of Coronary Graft Patency

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

Coronary angiography is the most commonly used invasive method for coronary pathology evaluation. The practical applications of this method are both in the diagnostic phase by assessing lesion’s anatomy (such as the lesion location) as well as in the treatment phase of interventional revascularisation. The graft angiography is similar to that used in native vessels, with specific procedures for the appropriate visualisation of the venous or arterial grafts. The mechanisms involved in recurrent post-surgery ischemia are represented by the significant bypass lesions and /or disease progression in the native vessels. The effectiveness of surgical myocardial revascularization decreases in time by the appearance of atherosclerotic lesions at the level of venous grafts. Arterial grafts are more resistant to atherosclerosis but their patency is affected by the competitive flow. The degree of preoperative native vessels stenosis is used as surrogate for competitive flow, graft patency being frequently correlated with significant stenoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Head SJ, Börgermann J, Osnabrugge RL, Kieser TM, Falk V, Taggart DP, Puskas JD, Gummert JF, Kappetein AP. Coronary artery bypass grafting: part 2 – optimizing outcomes and future prospects. Eur Heart J. 2013;34(37):2873–86.

    Article  PubMed  Google Scholar 

  2. Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann Surg. 2013;257(5):824–33.

    Article  PubMed  Google Scholar 

  3. Tatoulis J, Buxton BF, Fuller JA. Patencies of 2127 arterial to coronary conduits over 15 years. Ann Thorac Surg. 2004;77(1):93–101.

    Article  PubMed  Google Scholar 

  4. Tabata M, Grab JD, Khalpey Z, Edwards FH, O’Brien SM, Cohn LH, Bolman 3rd RM. Prevalence and variability of internal mammary artery graft use in contemporary multivessel coronary artery bypass graft surgery: analysis of the Society of Thoracic Surgeons National Cardiac Database. Circulation. 2009;120(11):935–40.

    Article  PubMed  Google Scholar 

  5. Locker C, Schaff HV, Dearani JA, Joyce LD, Park SJ, Burkhart HM, Suri RM, Greason KL, Stulak JM, Li Z, Daly RC. Multiple arterial grafts improve late survival of patients undergoing coronary artery bypass graft surgery: analysis of 8622 patients with multivessel disease. Circulation. 2012;126(9):1023–30.

    Article  PubMed  Google Scholar 

  6. Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, Thottapurathu L, Krasnicka B, Ellis N, Anderson RJ, Henderson W, VA Cooperative Study Group. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44(11):2149–56.

    Article  PubMed  Google Scholar 

  7. Buxton BF, Ruengsakulrach P, Fuller J, Rosalion A, Reid CM, Tatoulis J. The right internal thoracic artery graft – benefits of grafting the left coronary system and native vessels with a high grade stenosis. Eur J Cardiothorac Surg. 2000;18(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  8. Kern M. Evaluation of coronary artery bypass lesions in the cath lab. Cath Lab Digest. 2011;19(9). Available online at http://www.cathlabdigest.com/articles/Evaluation-Coronary-Artery-Bypass-Graft-Lesions-Cath-Lab. Accessed 13 May 2015.

  9. Hess CN, Rao SV, Skelding KA, et al. Arterial and venous access and hemostasis. In: Kern MJ, editor. The interventional cardiac catheterization handbook. 3rd ed. Philadelphia: Saunders Elsevier; 2013. p. 38–82.

    Chapter  Google Scholar 

  10. Michael TT, Alomar M, Papayannis A, Mogabgab O, Patel VG, Rangan BV, Luna M, Hastings JL, Grodin J, Abdullah S, Banerjee S, Brilakis ES. A randomized comparison of the transradial and transfemoral approaches for coronary artery bypass graft angiography and intervention: the RADIAL-CABG Trial (RADIAL Versus Femoral Access for Coronary Artery Bypass Graft Angiography and Intervention). JACC Cardiovasc Interv. 2013;6(11):1138–44.

    Article  PubMed  Google Scholar 

  11. Olenchock Jr SA, Karmpaliotis D, Gibson WJ, Murphy SA, Southard MC, Ciaglo L, Buros J, Mack MJ, Alexander JH, Harrington RA, Califf RM, Kouchoukos NT, Ferguson Jr TB, Gibson CM. Impact of saphenous vein graft radiographic markers on clinical events and angiographic parameters. Ann Thorac Surg. 2008;85(2):520–4.

    Article  PubMed  Google Scholar 

  12. Baim DS. Coronary angiography. In: Baim DS, editor. Grossman’s cardiac catheterization, angiography, and intervention. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 187–221.

    Google Scholar 

  13. Kern MJ. Angiography for percutaneous coronary interventions. In: Kern MJ, editor. The interventional cardiac catheterization handbook. 3rd ed. Philadelphia: Saunders Elsevier; 2013. p. 83–107.

    Chapter  Google Scholar 

  14. Loop FD, Lytle BW, Cosgrove DM, Stewart RW, Goormastic M, Williams GW, Golding LA, Gill CC, Taylor PC, Sheldon WC, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med. 1986;314(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28(3):616–26.

    Article  CAS  PubMed  Google Scholar 

  16. Di Mario C, Sutaria N. Coronary angiography in the angioplasty era: projections with a meaning. Heart. 2005;91(7):968–76.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tönz M, von Segesser L, Carrel T, Pasic M, Turina M. Steal syndrome after internal mammary artery bypass grafting – an entity with increasing significance. Thorac Cardiovasc Surg. 1993;41(2):112–7.

    Article  PubMed  Google Scholar 

  18. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310(13):819–24.

    Article  CAS  PubMed  Google Scholar 

  19. Buxton BF, Hayward PA, Newcomb AE, Moten S, Seevanayagam S, Gordon I. Choice of conduits for coronary artery bypass grafting: craft or science? Eur J Cardiothorac Surg. 2009;35(4):658–70.

    Article  PubMed  Google Scholar 

  20. Zhao DX, Leacche M, Balaguer JM, Boudoulas KD, Damp JA, Greelish JP, et al. Routine intraoperative completion angiography after coronary artery bypass grafting and 1-stop hybrid revascularization results from a fully integrated hybrid catheterization laboratory/operating room. J Am Coll Cardiol. 2009;53(3):232–41.

    Article  PubMed  Google Scholar 

  21. Harskamp RE, Bagai A, Halkos ME, Rao SV, Bachinsky WB, Patel MR, de Winter RJ, Peterson ED, Alexander JH, Lopes RD. Clinical outcomes after hybrid coronary revascularization versus coronary artery bypass surgery: a meta-analysis of 1,190 patients. Am Heart J. 2014;167:585–92.

    Article  PubMed  Google Scholar 

  22. Jabara R, Chronos N, Klein L, Eisenberg S, Allen R, Bradford S, Frohwein S. Comparison of multidetector 64-slice computed tomographic angiography to coronary angiography to assess the patency of coronary artery bypass grafts. Am J Cardiol. 2007;99(11):1529–34.

    Article  PubMed  Google Scholar 

  23. Weustink AC, Nieman K, Pugliese F, Mollet NR, Meijboom WB, van Mieghem C, ten Kate GJ, Cademartiri F, Krestin GP, de Feyter PJ. Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2009;2(7):816–24.

    Article  PubMed  Google Scholar 

  24. Harskamp RE, Williams JB, Hill RC, de Winter RJ, Alexander JH, Lopes RD. Saphenous vein graft failure and clinical outcomes: toward a surrogate end point in patients following coronary artery bypass surgery? Am Heart J. 2013;165(5):639–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buxton BF, Durairaj M, Hare DL, Gordon I, Moten S, Orford V, Seevanayagam S. Do angiographic results from symptom-directed studies reflect true graft patency? Ann Thorac Surg. 2005;80(3):896–900; discussion 900–1.

    Article  PubMed  Google Scholar 

  26. Miwa S, Desai N, Koyama T, Chan E, Cohen EA, Fremes SE, Radial Artery Patency Study Investigators. Radial artery angiographic string sign: clinical consequences and the role of pharmacologic therapy. Ann Thorac Surg. 2006;81(1):112–8; discussion 119.

    Article  PubMed  Google Scholar 

  27. Azen SP, Mack WJ, Cashin-Hemphill L, LaBree L, Shircore AM, Selzer RH, Blankenhorn DH, Hodis HN. Progression of coronary artery disease predicts clinical coronary events. Long-term follow-up from the Cholesterol Lowering Atherosclerosis Study. Circulation. 1996;93(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  28. Hayward PA, Zhu YY, Nguyen TT, Hare DL, Buxton BF. Should all moderate coronary lesions be grafted during primary coronary bypass surgery? An analysis of progression of native vessel disease during a randomized trial of conduits. J Thorac Cardiovasc Surg. 2013;145(1):140–8; discussion 148–9.

    Article  PubMed  Google Scholar 

  29. Manninen HI, Jaakkola P, Suhonen M, Rehnberg S, Vuorenniemi R, Matsi PJ. Angiographic predictors of graft patency and disease progression after coronary artery bypass grafting with arterial and venous grafts. Ann Thorac Surg. 1998;66(4):1289–94.

    Article  CAS  PubMed  Google Scholar 

  30. Borges JC, Lopes N, Soares PR, Góis AF, Stolf NA, Oliveira SA, Hueb WA, Ramires JA. Five-year follow-up of angiographic disease progression after medicine, angioplasty, or surgery. J Cardiothorac Surg. 2010;5:91.

    Article  PubMed  PubMed Central  Google Scholar 

  31. FitzGibbon GM, Burton JR, Leach AJ. Coronary bypass graft fate: angiographic grading of 1400 consecutive grafts early after operation and of 1132 after one year. Circulation. 1978;57(6):1070–4.

    Article  CAS  PubMed  Google Scholar 

  32. Rasmussen C, Thiis JJ, Clemmensen P, Efsen F, Arendrup HC, Saunamäki K, Madsen JK, Pettersson G. Significance and management of early graft failure after coronary artery bypass grafting: feasibility and results of acute angiography and re-re-vascularization. Eur J Cardiothorac Surg. 1997;12(6):847–52.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen T, Pham L, Cheem TH, Douglas JS, Hermiller J, Grines C. Approach to the patient with prior bypass surgery. J Interv Cardiol. 2004;17(5):339–46.

    Article  PubMed  Google Scholar 

  34. Laflamme M, DeMey N, Bouchard D, Carrier M, Demers P, Pellerin M, Couture P, Perrault LP. Management of early postoperative coronary artery bypass graft failure. Interact Cardiovasc Thorac Surg. 2012;14(4):452–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fabricius AM, Gerber W, Hanke M, Garbade J, Autschbach R, Mohr FW. Early angiographic control of perioperative ischemia after coronary artery bypass grafting. Eur J Cardiothorac Surg. 2001;19(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  36. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97(9):916–31.

    Article  CAS  PubMed  Google Scholar 

  37. Shavadia J, Norris CM, Graham MM, Verma S, Ali I, Bainey KR. Symptomatic graft failure and impact on clinical outcome after coronary artery bypass grafting surgery: results from the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease registry. Am Heart J. 2015;169(6):833–40.

    Article  PubMed  Google Scholar 

  38. Coolong A, Baim DS, Kuntz RE, O’Malley AJ, Marulkar S, Cutlip DE, Popma JJ, Mauri L. Saphenous vein graft stenting and major adverse cardiac events: a predictive model derived from a pooled analysis of 3958 patients. Circulation. 2008;117(6):790–7.

    Article  PubMed  Google Scholar 

  39. Caños DA, Mintz GS, Berzingi CO, Apple S, Kotani J, Pichard AD, Satler LF, Suddath WO, Waksman R, Lindsay Jr J, Weissman NJ. Clinical, angiographic, and intravascular ultrasound characteristics of early saphenous vein graft failure. J Am Coll Cardiol. 2004;44(1):53–6.

    Article  PubMed  Google Scholar 

  40. Chen L, Théroux P, Lespérance J, Shabani F, Thibault B, De Guise P. Angiographic features of vein grafts versus ungrafted coronary arteries in patients with unstable angina and previous bypass surgery. J Am Coll Cardiol. 1996;28(6):1493–9.

    Article  CAS  PubMed  Google Scholar 

  41. Preston LM, Calvin JE, Class S, Parrillo JE, Klein LW. Coronary angiographic morphology in unstable angina: comparative observations of culprit lesions in saphenous vein grafts versus native coronary arteries. J Invasive Cardiol. 2002;14(2):81–6.

    PubMed  Google Scholar 

  42. Barner HB, Barnett MG. Fifteen- to twenty-one-year angiographic assessment of internal thoracic artery as a bypass conduit. Ann Thorac Surg. 1994;57(6):1526–8.

    Article  CAS  PubMed  Google Scholar 

  43. Taggart DP. Current status of arterial grafts for coronary artery bypass grafting. Ann Cardiothorac Surg. 2013;2(4):427–30.

    PubMed  PubMed Central  Google Scholar 

  44. Shelton ME, Forman MB, Virmani R, Bajaj A, Stoney WS, Atkinson JB. A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts. J Am Coll Cardiol. 1988;11(2):297–307.

    Article  CAS  PubMed  Google Scholar 

  45. FitzGibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol. 1991;17(5):1075–80.

    Article  CAS  PubMed  Google Scholar 

  46. Lopes RD, Mehta RH, Hafley GE, Williams JB, Mack MJ, Peterson ED, Allen KB, Harrington RA, Gibson CM, Califf RM, Kouchoukos NT, Ferguson Jr TB, Alexander JH, Project of Ex Vivo Vein Graft Engineering via Transfection IV (PREVENT IV) Investigators. Relationship between vein graft failure and subsequent clinical outcomes after coronary artery bypass surgery. Circulation. 2012;125(6):749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Farooq V, Serruys PW, Garcia-Garcia HM, Zhang Y, Bourantas CV, Holmes DR, Mack M, Feldman T, Morice MC, Ståhle E, James S, Colombo A, Diletti R, Papafaklis MI, de Vries T, Morel MA, van Es GA, Mohr FW, Dawkins KD, Kappetein AP, Sianos G, Boersma E. The negative impact of incomplete angiographic revascularization on clinical outcomes and its association with total occlusions: the SYNTAX (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) trial. J Am Coll Cardiol. 2013;61(3):282–94.

    Article  CAS  PubMed  Google Scholar 

  48. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55(25):2816–21.

    Article  PubMed  Google Scholar 

  49. Liao L, Kong DF, Shaw LK, Sketch Jr MH, Milano CA, Lee KL, Mark DB. A new anatomic score for prognosis after cardiac catheterization in patients with previous bypass surgery. J Am Coll Cardiol. 2005;46(9):1684–92.

    Article  PubMed  Google Scholar 

  50. Farooq V, Girasis C, Magro M, Onuma Y, Morel MA, Heo JH, Garcia-Garcia H, Kappetein AP, van den Brand M, Holmes DR, Mack M, Feldman T, Colombo A, Ståhle E, James S, Carrié D, Fournial G, van Es GA, Dawkins KD, Mohr FW, Morice MC, Serruys PW. The CABG SYNTAX Score – an angiographic tool to grade the complexity of coronary disease following coronary artery bypass graft surgery: from the SYNTAX Left Main Angiographic (SYNTAX-LE MANS) substudy. EuroIntervention. 2013;8(11):1277–85.

    Article  PubMed  Google Scholar 

  51. Farooq V, Girasis C, Magro M, Onuma Y, Morel MA, Heo JH, Garcia-Garcia HM, Kappetein AP, van den Brand M, Holmes DR, Mack M, Feldman T, Colombo A, Ståhle E, James S, Carrié D, Fournial G, van Es GA, Dawkins KD, Mohr FW, Morice MC, Serruys PW. The coronary artery bypass graft SYNTAX Score: final five-year outcomes from the SYNTAX-LE MANS left main angiographic substudy. EuroIntervention. 2013;9(8):1009–10.

    Article  PubMed  Google Scholar 

  52. Halabi AR, Alexander JH, Shaw LK, Lorenz TJ, Liao L, Kong DF, Milano CA, Harrington RA, Smith PK. Relation of early saphenous vein graft failure to outcomes following coronary artery bypass surgery. Am J Cardiol. 2005;96(9):1254–9.

    Article  PubMed  Google Scholar 

  53. Lytle BW, Loop FD, Taylor PC, Simpfendorfer C, Kramer JR, Ratliff NB, Goormastic M, Cosgrove DM. Vein graft disease: the clinical impact of stenoses in saphenous vein bypass grafts to coronary arteries. J Thorac Cardiovasc Surg. 1992;103(5):831–40.

    CAS  PubMed  Google Scholar 

  54. Nakajima H, Kobayashi J, Tagusari O, Niwaya K, Funatsu T, Kawamura A, Yagihara T, Kitamura S. Angiographic flow grading and graft arrangement of arterial conduits. J Thorac Cardiovasc Surg. 2006;132(5):1023–9.

    Article  PubMed  Google Scholar 

  55. Glineur D, D’hoore W, de Kerchove L, Noirhomme P, Price J, Hanet C, El Khoury G. Angiographic predictors of 3-year patency of bypass grafts implanted on the right coronary artery system: a prospective randomized comparison of gastroepiploic artery, saphenous vein, and right internal thoracic artery grafts. J Thorac Cardiovasc Surg. 2011;142(5):980–8.

    Article  PubMed  Google Scholar 

  56. Nakajima H, Kobayashi J, Toda K, Fujita T, Shimahara Y, Kasahara Y, Kitamura S. A 10-year angiographic follow-up of competitive flow in sequential and composite arterial grafts. Eur J Cardiothorac Surg. 2011;40(2):399–404.

    PubMed  Google Scholar 

  57. Glineur D, Hanet C. Competitive flow in coronary bypass surgery: is it a problem? Curr Opin Cardiol. 2012;27(6):620–8.

    Article  PubMed  Google Scholar 

  58. Berger A, MacCarthy PA, Vanermen H, De Bruyne B. Occlusion of internal mammary grafts: a review of the potential causative factors. Acta Chir Belg. 2004;104(6):630–4.

    CAS  PubMed  Google Scholar 

  59. Nordgaard H, Swillens A, Nordhaug D, Kirkeby-Garstad I, Van Loo D, Vitale N, Segers P, Haaverstad R, Lovstakken L. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model. Cardiovasc Res. 2010;88(3):512–9.

    Article  CAS  PubMed  Google Scholar 

  60. Barner HB. Double internal mammary-coronary artery bypass. Arch Surg. 1974;109(5):627–30.

    Article  CAS  PubMed  Google Scholar 

  61. Glineur D, Poncelet A, El Khoury G, D’hoore W, Astarci P, Zech F, Noirhomme P, Hanet C. Fractional flow reserve of pedicled internal thoracic artery and saphenous vein grafts 6 months after bypass surgery. Eur J Cardiothorac Surg. 2007;31(3):376–81.

    Article  PubMed  Google Scholar 

  62. Siebenmann R, Egloff L, Hirzel H, Rothlin M, Studer M, Tartini R. The internal mammary artery ‘string phenomenon’. Analysis of 10 cases. Eur J Cardiothorac Surg. 1993;7(5):235–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hashimoto H, Isshiki T, Ikari Y, Hara K, Saeki F, Tamura T, Yamaguchi T, Suma H. Effects of competitive blood flow on arterial graft patency and diameter. Medium-term postoperative follow-up. J Thorac Cardiovasc Surg. 1996;111(2):399–407.

    Article  CAS  PubMed  Google Scholar 

  64. Nasu M, Akasaka T, Okazaki T, Shinkai M, Fujiwara H, Sono J, Okada Y, Miyamoto S, Nishiuchi S, Yoshikawa J, et al. Postoperative flow characteristics of left internal thoracic artery grafts. Ann Thorac Surg. 1995;59(1):154–61; discussion 161–2.

    Article  CAS  PubMed  Google Scholar 

  65. Shimizu T, Hirayama T, Suesada H, Ikeda K, Ito S, Ishimaru S. Effect of flow competition on internal thoracic artery graft: postoperative velocimetric and angiographic study. J Thorac Cardiovasc Surg. 2000;120(3):459–65.

    Article  CAS  PubMed  Google Scholar 

  66. Berger A, MacCarthy PA, Siebert U, Carlier S, Wijns W, Heyndrickx G, Bartunek J, Vanermen H, De Bruyne B. Long-term patency of internal mammary artery bypass grafts: relationship with preoperative severity of the native coronary artery stenosis. Circulation. 2004;110(11 Suppl 1):II36–40.

    PubMed  Google Scholar 

  67. Sabik 3rd JF, Lytle BW, Blackstone EH, Khan M, Houghtaling PL, Cosgrove DM. Does competitive flow reduce internal thoracic artery graft patency? Ann Thorac Surg. 2003;76(5):1490–6; discussion 1497.

    Article  PubMed  Google Scholar 

  68. Hadinata IE, Hayward PA, Hare DL, Matalanis GS, Seevanayagam S, Rosalion A, Buxton BF. Choice of conduit for the right coronary system: 8-year analysis of Radial Artery Patency and Clinical Outcomes trial. Ann Thorac Surg. 2009;88(5):1404–9.

    Article  PubMed  Google Scholar 

  69. Botman CJ, Schonberger J, Koolen S, Penn O, Botman H, Dib N, Eeckhout E, Pijls N. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83(6):2093–7.

    Article  PubMed  Google Scholar 

  70. Kolozsvari R, Galajda Z, Ungvari T, Szabo G, Racz I, Szerafin T, Herzfeld I, Edes I, Peterffy A, Koszegi Z. Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series. J Cardiothorac Surg. 2012;7:12.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sabik 3rd JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg. 2005;79(2):544–51; discussion 544–51.

    Article  PubMed  Google Scholar 

  72. Sabik 3rd JF, Blackstone EH. Coronary artery bypass graft patency and competitive flow. J Am Coll Cardiol. 2008;51(2):126–8.

    Article  PubMed  Google Scholar 

  73. Nakajima H, Iguchi A, Tabata M, Koike H, Morita K, Takahashi K, Asakura T, Nishimura S, Niinami H. Predictors and prevention of flow insufficiency due to limited flow demand. J Cardiothorac Surg. 2014;9(1):188.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Nita MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nita, D., Pinte, F., Goleanu, V., Bontas, E., Mohamed, A., Parepa, I.R. (2016). Invasive Angiographic Assessment of Coronary Graft Patency. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics