Skip to main content

Activation of Cytokines in CABG Failure

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

Coronary artery disease (CAD) is the most common cause of death in this century. Many interventions have been demonstrated that decrease the rate of mortality and morbidity of CAD, and amongst them is the coronary artery bypass graft (CABG) procedure. Activation of inflammatory cytokines preoperatively and postoperatively is one of the main causes of CABG failure. Many factors during CABG, such as reperfusion injury, will stimulate inflammatory cytokines (e.g., TNF-α[alpha], IL-6), chemokines (e.g., IL-8), the complement system (e.g., C5a), neutrophils, and macrophages. Exposure to high levels of the inflammatory cytokines IL-1beta, IL-2, IL-6, IL-15, or IL-21 stimulates aggressive cytotoxic T cells. These cytokines are responsible for the intensity of the attack against the transplanted graft by the patient on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gu YJ, Mariani MA, van Oeveren W, Grandjean JG, Boonstra PW. Reduction of the inflammatory response in patients undergoing minimally invasive coronary artery bypass grafting. Ann Thorac Surg. 1998;65(2):420–4.

    Article  CAS  PubMed  Google Scholar 

  2. Hall RI, Smith MS, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg. 1997;85(4):766–82.

    CAS  PubMed  Google Scholar 

  3. McBride WT, Armstrong MA, McBride SJ. Immunomodulation: an important concept in modern anaesthesia. Anaesthesia. 1996;51(5):465–73.

    Article  CAS  PubMed  Google Scholar 

  4. Fransen EJ, Maessen JG, Hermens WT, Glatz JF, Buurman WA. Peri-operative myocardial tissue injury and the release of inflammatory mediators in coronary artery bypass graft patients. Cardiovasc Res. 2000;45(4):853–9.

    Article  CAS  PubMed  Google Scholar 

  5. Davies MG, Hagen PO. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg. 1995;9(1):7–18.

    Article  PubMed  Google Scholar 

  6. Keynton RS, Evancho MM, Sims RL, Rodway NV, Gobin A, Rittgers SE. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J Biomech Eng. 2001;123(5):464–73.

    Article  CAS  PubMed  Google Scholar 

  7. Patel SD, Waltham M, Wadoodi A, Burnand KG, Smith A. The role of endothelial cells and their progenitors in intimal hyperplasia. Ther Adv Cardiovasc Dis. 2010;4(2):129–41.

    Article  CAS  PubMed  Google Scholar 

  8. Goel SA, Guo LW, Liu B, Kent KC. Mechanisms of post-intervention arterial remodelling. Cardiovasc Res. 2012;96(3):363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bechler SL, Si Y, Yu Y, Ren J, Liu B, Lynn DM. Reduction of intimal hyperplasia in injured rat arteries promoted by catheter balloons coated with polyelectrolyte multilayers that contain plasmid DNA encoding pkcdelta. Biomaterials. 2013;34(1):226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol. 2006;84(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  11. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86(2):515–81.

    Article  CAS  PubMed  Google Scholar 

  12. McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008;8(2):99–117.

    Article  CAS  PubMed  Google Scholar 

  13. Grotzinger J. Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta. 2002;1592(3):215–23.

    Article  CAS  PubMed  Google Scholar 

  14. Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science. 1995;268(5208):251–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci. 2005;108(3):205–13.

    Article  CAS  PubMed  Google Scholar 

  16. Ihle JN. The stat family in cytokine signaling. Curr Opin Cell Biol. 2001;13(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  17. Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor nf-kappab reduces matrix metalloproteinase-1, −3 and −9 production by vascular smooth muscle cells. Cardiovasc Res. 2001;50(3):556–65.

    Article  CAS  PubMed  Google Scholar 

  18. ten Dijke P, Arthur HM. Extracellular control of tgfbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69.

    Article  PubMed  Google Scholar 

  19. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem. 1996;271(2):736–41.

    Article  CAS  PubMed  Google Scholar 

  20. Jennings RB, Reimer KA. The cell biology of acute myocardial ischemia. Annu Rev Med. 1991;42:225–46.

    Article  CAS  PubMed  Google Scholar 

  21. Depre C, Vatner SF. Cardioprotection in stunned and hibernating myocardium. Heart Fail Rev. 2007;12(3–4):307–17.

    Article  CAS  PubMed  Google Scholar 

  22. Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011;301(5):H1723–41.

    Article  CAS  PubMed  Google Scholar 

  23. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35.

    Article  CAS  PubMed  Google Scholar 

  24. Bulkley GB. Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl. 1987;8:66–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31(4):645–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462(2):245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart. Role of intracellular calcium. J Clin Invest. 1991;88(2):361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal. 2002;4(5):769–81.

    Article  CAS  PubMed  Google Scholar 

  30. Szekely A, Heindl B, Zahler S, Conzen PF, Becker BF. Nonuniform behavior of intravenous anesthetics on postischemic adhesion of neutrophils in the guinea pig heart. Anesth Analg. 2000;90(6):1293–300.

    Article  CAS  PubMed  Google Scholar 

  31. Budde JM, Morris CD, Velez DA, Muraki S, Wang NP, Guyton RA, et al. Reduction of infarct size and preservation of endothelial function by multidose intravenous adenosine during extended reperfusion. J Surg Res. 2004;116(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  32. Pohlman TH, Harlan JM. Adaptive responses of the endothelium to stress. J Surg Res. 2000;89(1):85–119.

    Article  CAS  PubMed  Google Scholar 

  33. Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfi N, et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med. 2005;201(1):63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, et al. Essential role of icam-1/cd18 in mediating epc recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res. 2006;99(3):315–22.

    Article  CAS  PubMed  Google Scholar 

  35. Simon SI, Goldsmith HL. Leukocyte adhesion dynamics in shear flow. Ann Biomed Eng. 2002;30(3):315–32.

    Article  PubMed  Google Scholar 

  36. Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflammation. Pharmacol Rev. 1996;48(2):213–29.

    CAS  PubMed  Google Scholar 

  37. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. Il-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  38. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reffelmann T, Kloner RA. Microvascular alterations after temporary coronary artery occlusion: the no-reflow phenomenon. J Cardiovasc Pharmacol Ther. 2004;9(3):163–72.

    Article  PubMed  Google Scholar 

  40. Masini E, Salvemini D, Ndisang JF, Gai P, Berni L, Moncini M, et al. Cardioprotective activity of endogenous and exogenous nitric oxide on ischaemia reperfusion injury in isolated guinea pig hearts. Inflamm Res. 1999;48(11):561–8.

    Article  CAS  PubMed  Google Scholar 

  41. Reiter RJ, Tan DX. Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  42. Lentsch AB, Ward PA. Regulation of inflammatory vascular damage. J Pathol. 2000;190(3):343–8.

    Article  CAS  PubMed  Google Scholar 

  43. Di Lisa F. Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life. 2001;52(3–5):255–61.

    Article  PubMed  Google Scholar 

  44. Wan S, Yim AP. Cytokines in myocardial injury: impact on cardiac surgical approach. Eur J Cardiothorac Surg. 1999;16 Suppl 1:S107–11.

    Article  PubMed  Google Scholar 

  45. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346(6283):425–34.

    Article  CAS  PubMed  Google Scholar 

  46. Craddock PR, Hammerschmidt D, White JG, Dalmosso AP, Jacob HS. Complement (c5-a)-induced granulocyte aggregation in vitro. A possible mechanism of complement-mediated leukostasis and leukopenia. J Clin Invest. 1977;60(1):260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Groneberg D, Konig P, Wirth A, Offermanns S, Koesling D, Friebe A. Smooth muscle-specific deletion of nitric oxide-sensitive guanylyl cyclase is sufficient to induce hypertension in mice. Circulation. 2010;121(3):401–9.

    Article  CAS  PubMed  Google Scholar 

  48. Bryan NS, Bian K, Murad F. Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci. 2009;14:1–18.

    Article  CAS  Google Scholar 

  49. Foster MW, Hess DT, Stamler JS. Protein s-nitrosylation in health and disease: a current perspective. Trends Mol Med. 2009;15(9):391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Derbyshire ER, Marletta MA. Biochemistry of soluble guanylate cyclase. Handb Exp Pharmacol. 2009;191:17–31.

    Article  CAS  PubMed  Google Scholar 

  51. Glina S, Glina FP. Pathogenic mechanisms linking benign prostatic hyperplasia, lower urinary tract symptoms and erectile dysfunction. Ther Adv Urol. 2013;5(4):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Casteel DE, Smith-Nguyen EV, Sankaran B, Roh SH, Pilz RB, Kim C. A crystal structure of the cyclic gmp-dependent protein kinase i{beta} dimerization/docking domain reveals molecular details of isoform-specific anchoring. J Biol Chem. 2010;285(43):32684–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gratzke C, Angulo J, Chitaley K, Dai YT, Kim NN, Paick JS, et al. Anatomy, physiology, and pathophysiology of erectile dysfunction. J Sex Med. 2010;7(1 Pt 2):445–75.

    Article  CAS  PubMed  Google Scholar 

  54. Ao L, Zou N, Cleveland Jr JC, Fullerton DA, Meng X. Myocardial tlr4 is a determinant of neutrophil infiltration after global myocardial ischemia: mediating kc and mcp-1 expression induced by extracellular hsc70. Am J Physiol Heart Circ Physiol. 2009;297(1):H21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maekawa N, Wada H, Kanda T, Niwa T, Yamada Y, Saito K, et al. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J Am Coll Cardiol. 2002;39(7):1229–35.

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann U, Domeier E, Frantz S, Laser M, Weckler B, Kuhlencordt P, et al. Increased myocardial oxygen consumption by tnf-alpha is mediated by a sphingosine signaling pathway. Am J Physiol Heart Circ Physiol. 2003;284(6):H2100–5.

    Article  CAS  PubMed  Google Scholar 

  57. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89(9):763–71.

    Article  CAS  PubMed  Google Scholar 

  58. Kimura A, Kishimoto T. Il-6: regulator of treg/th17 balance. Eur J Immunol. 2010;40(7):1830–5.

    Article  CAS  PubMed  Google Scholar 

  59. Eckle T, Eltzschig HK. Toll-like receptor signaling during myocardial ischemia. Anesthesiology. 2011;114(3):490–2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Ha T, Liu L, Zou J, Zhang X, Kalbfleisch J, et al. Increased expression of microrna-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2013;97(3):432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB, Taylor AA, et al. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring cd11b/cd18-icam-1 adherence. J Clin Invest. 1992;90(4):1335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones SA, Richards PJ, Scheller J, Rose-John S. Il-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res. 2005;25(5):241–53.

    Article  CAS  PubMed  Google Scholar 

  63. Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock. 2004;21(5):401–9.

    Article  CAS  PubMed  Google Scholar 

  64. Busche MN, Pavlov V, Takahashi K, Stahl GL. Myocardial ischemia and reperfusion injury is dependent on both igm and mannose-binding lectin. Am J Physiol Heart Circ Physiol. 2009;297(5):H1853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shernan SK. Perioperative myocardial ischemia reperfusion injury. Anesthesiol Clin North America. 2003;21(3):465–85.

    Article  CAS  PubMed  Google Scholar 

  66. Rossen RD, Michael LH, Kagiyama A, Savage HE, Hanson G, Reisberg MA, et al. Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human c1q in vivo. Circ Res. 1988;62(3):572–84.

    Article  CAS  PubMed  Google Scholar 

  67. Kilgore KS, Friedrichs GS, Homeister JW, Lucchesi BR. The complement system in myocardial ischaemia/reperfusion injury. Cardiovasc Res. 1994;28(4):437–44.

    Article  CAS  PubMed  Google Scholar 

  68. Collard CD, Agah A, Reenstra W, Buras J, Stahl GL. Endothelial nuclear factor-kappab translocation and vascular cell adhesion molecule-1 induction by complement: inhibition with anti-human c5 therapy or cgmp analogues. Arterioscler Thromb Vasc Biol. 1999;19(11):2623–9.

    Article  CAS  PubMed  Google Scholar 

  69. Cybulsky AV, Monge JC, Papillon J, McTavish AJ. Complement c5b-9 activates cytosolic phospholipase a2 in glomerular epithelial cells. Am J Physiol. 1995;269(5 Pt 2):F739–49.

    CAS  PubMed  Google Scholar 

  70. Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, et al. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res. 2000;86(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  71. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–56.

    Article  CAS  PubMed  Google Scholar 

  72. Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure: “oxygen wastage” revisited. Circ Res. 2000;86(2):119–20.

    Article  CAS  PubMed  Google Scholar 

  73. Jones SP, Hoffmeyer MR, Sharp BR, Ho YS, Lefer DJ. Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2003;284(1):H277–82.

    Article  CAS  PubMed  Google Scholar 

  74. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    CAS  PubMed  Google Scholar 

  75. Braunersreuther V, Jaquet V. Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Curr Pharm Biotechnol. 2012;13(1):97–114.

    Article  CAS  PubMed  Google Scholar 

  76. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17(6):1503–20.

    Article  CAS  PubMed  Google Scholar 

  77. Miura M, Fu X, Zhang QW, Remick DG, Fairchild RL. Neutralization of gro alpha and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury. Am J Pathol. 2001;159(6):2137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najah R. Hadi MD, PhD, FRCP, FACP, FCCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hadi, N.R., Ahmed, A.A. (2016). Activation of Cytokines in CABG Failure. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics