Skip to main content

Impact of Cellular Mechanisms of Ischemia on CABG Failure

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

Since its introduction in clinical practice in the early 1960s, coronary artery bypass graft (CABG) surgery has evolved steadily, and nowadays represents the major therapeutic option for coronary artery disease (CAD) with multivessel involvement, unprotected left main coronary disease, left ventricular dysfunction, or for patients with diabetes mellitus, where CABG results are superior to percutaneous interventions with drug-eluting stents. Despite major progress in surgical techniques and in the prevention or treatment of postoperative complications, the incidence of these complications remains elevated, partly due to complexity, advanced stage CAD, and co-morbidity in patients subjected to this type of intervention. A good understanding by clinicians of the intricate pathophysiology processes at cellular and molecular level associated with myocardial ischemia and its consequences, like apoptotic or oncotic cell death, fibrosis and ventricular remodeling, revascularization, neointimal proliferation in vascular grafts, is a prerequisite for a fruitful application of novel experimental therapies, such as bone marrow hematopoietic cells or mesenchymal stem cells, gene therapies or micro-RNA antisense sequences aiming to improve revascularization, limit cellular apoptosis and fibrosis, and promote redifferentiation to cardiomyocytes of mature cells like fibroblasts. A particular emphasis has been placed on sensitive topics such as myocardial stunning, hibernation, ischemic pre- and post-conditioning, and pharmacological approaches to apoptosis and neointimal proliferation in vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lenfant C. Shattuck lecture – clinical research to clinical practice – lost in translation? N Engl J Med. 2003;349(9):868–74.

    Article  PubMed  Google Scholar 

  2. Deb S, Wijeysundera HC, Ko DT, Tsubota H, Hill S, Fremes SE. Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization: a systematic review. JAMA. 2013;310(19):2086–95.

    Article  CAS  PubMed  Google Scholar 

  3. Alam M, Huang HD, Shahzad SA, Kar B, Virani SS, Rogers PA, et al. Percutaneous coronary intervention vs. coronary artery bypass graft surgery for unprotected left main coronary artery disease in the drug-eluting stents era – an aggregate data meta-analysis of 11,148 patients. Circ J. 2013;77(2):372–82.

    Article  PubMed  Google Scholar 

  4. Kinoshita T, Asai T. Preservation of myocardium during coronary artery bypass surgery. Curr Cardiol Rep. 2012;14(4):418–23.

    Article  PubMed  Google Scholar 

  5. Griffo R, Ambrosetti M, Tramarin R, Fattirolli F, Temporelli PL, Vestri AR, et al. Effective secondary prevention through cardiac rehabilitation after coronary revascularization and predictors of poor adherence to lifestyle modification and medication. Results of the ICAROS survey. Int J Cardiol. 2013;167(4):1390–5.

    Article  PubMed  Google Scholar 

  6. Ambrosetti M, Griffo R, Tramarin R, Fattirolli F, Temporelli PL, Faggiano P, et al. Prevalence and 1-year prognosis of transient heart failure following coronary revascularization. Intern Emerg Med. 2014;9(6):641–7.

    PubMed  Google Scholar 

  7. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.

    Article  CAS  PubMed  Google Scholar 

  8. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999;79(3):917–1017.

    CAS  PubMed  Google Scholar 

  9. Zhang JF, Siegelbaum SA. Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes. J Gen Physiol. 1991;98(6):1065–83.

    Article  CAS  PubMed  Google Scholar 

  10. Prod′hom B, Pietrobon D, Hess P. Interactions of protons with single open l-type calcium channels. Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol. 1989;94(1):23–42.

    Article  PubMed  Google Scholar 

  11. Tytgat J, Nilius B, Carmeliet E. Modulation of the T-type cardiac ca channel by changes in proton concentration. J Gen Physiol. 1990;96(5):973–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ito H, Vereecke J, Carmeliet E. Intracellular protons inhibit inward rectifier k+ channel of guinea-pig ventricular cell membrane. Pflugers Arch. 1992;422(3):280–6.

    Article  CAS  PubMed  Google Scholar 

  13. Veldkamp MW, Vereecke J, Carmeliet E. Effects of intracellular sodium and hydrogen ion on the sodium activated potassium channel in isolated patches from guinea pig ventricular myocytes. Cardiovasc Res. 1994;28(7):1036–41.

    Article  CAS  PubMed  Google Scholar 

  14. Cuevas J, Bassett AL, Cameron JS, Furukawa T, Myerburg RJ, Kimura S. Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. Am J Physiol. 1991;261(3 Pt 2):H755–61.

    CAS  PubMed  Google Scholar 

  15. Fan Z, Makielski JC. Intracellular H+ and Ca2+ modulation of trypsin-modified ATP-sensitive K+ channels in rabbit ventricular myocytes. Circ Res. 1993;72(3):715–22.

    Article  CAS  PubMed  Google Scholar 

  16. Koyano T, Kakei M, Nakashima H, Yoshinaga M, Matsuoka T, Tanaka H. ATP-regulated K+ channels are modulated by intracellular H+ in guinea-pig ventricular cells. J Physiol. 1993;463:747–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim D. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J Gen Physiol. 1992;100(6):1021–40.

    Article  CAS  PubMed  Google Scholar 

  18. Stengl M, Carmeliet E, Mubagwa K, Flameng W. Modulation of transient outward current by extracellular protons and Cd2+ in rat and human ventricular myocytes. J Physiol. 1998;511(Pt 3):827–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carmeliet E. The delayed potassium current in rabbit ventricular myocytes is reduced in acidic pH (abstract). Jpn J Physiol. 1995;45:S15.

    Google Scholar 

  20. Burt JM. Block of intercellular communication: interaction of intracellular H+ and Ca2+. Am J Physiol. 1987;253(4 Pt 1):C607–12.

    CAS  PubMed  Google Scholar 

  21. Firek L, Weingart R. Modification of gap junction conductance by divalent cations and protons in neonatal rat heart cells. J Mol Cell Cardiol. 1995;27(8):1633–43.

    Article  CAS  PubMed  Google Scholar 

  22. Noma A, Tsuboi N. Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol. 1987;382:193–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White RL, Doeller JE, Verselis VK, Wittenberg BA. Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J Gen Physiol. 1990;95(6):1061–75.

    Article  CAS  PubMed  Google Scholar 

  24. Gwanyanya A, Amuzescu B, Zakharov SI, Macianskiene R, Sipido KR, Bolotina VM, et al. Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol. 2004;559(Pt 3):761–76. Epub 2004 Jul 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu L, Mann G, Meissner G. Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res. 1996;79(6):1100–9.

    Article  CAS  PubMed  Google Scholar 

  26. Szabó I, Bernardi P, Zoratti M. Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem. 1992;267(5):2940–6.

    PubMed  Google Scholar 

  27. Hendrikx M, Mubagwa K, Verdonck F, Overloop K, Van Hecke P, Vanstapel F, et al. New Na(+)-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation. 1994;89(6):2787–98.

    Article  CAS  PubMed  Google Scholar 

  28. Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res. 1992;71(5):1123–30.

    Article  CAS  PubMed  Google Scholar 

  29. Zimmerman AN, Hülsmann WC. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature. 1966;211(5049):646–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bosteels S, Matejovic P, Flameng W, Mubagwa K. Sodium influx via a non-selective pathway activated by the removal of extracellular divalent cations: possible role in the calcium paradox. Cardiovasc Res. 1999;43(2):417–25.

    Article  CAS  PubMed  Google Scholar 

  31. Mubagwa K, Stengl M, Flameng W. Extracellular divalent cations block a cation non-selective conductance unrelated to calcium channels in rat cardiac muscle. J Physiol. 1997;502(Pt 2):235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Piper HM. The calcium paradox revisited: an artefact of great heuristic value. Cardiovasc Res. 2000;45(1):123–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zakharov SI, Smani T, Leno E, Macianskiene R, Mubagwa K, Bolotina VM. Monovalent cation (MC) current in cardiac and smooth muscle cells: regulation by intracellular Mg2+ and inhibition by polycations. Br J Pharmacol. 2003;138(1):234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, et al. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci U S A. 2007;104(41):16323–8. Epub 12007 Oct 16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mubagwa K, Gwanyanya A, Zakharov S, Macianskiene R. Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium. Arch Biochem Biophys. 2007;458(1):73–89.

    Article  CAS  PubMed  Google Scholar 

  36. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115(7):863–77.

    Article  CAS  PubMed  Google Scholar 

  37. Sato D, Xie LH, Sovari AA, Tran DX, Morita N, Xie F, et al. Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. Proc Natl Acad Sci U S A. 2009;106(9):2983–8. Epub 2009 Feb 2913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L. Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther. 2006;318(1):214–22. Epub 2006 Mar 2024.

    Article  CAS  PubMed  Google Scholar 

  39. Ward CA, Giles WR. Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol. 1997;500(Pt 3):631–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie LH, Chen F, Karagueuzian HS, Weiss JN. Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res. 2009;104(1):79–86. Epub 2008 Nov 2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mullane KM, Read N, Salmon JA, Moncada S. Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther. 1984;228(2):510–22.

    CAS  PubMed  Google Scholar 

  42. Russo RG, Liotta LA, Thorgeirsson U, Brundage R, Schiffmann E. Polymorphonuclear leukocyte migration through human amnion membrane. J Cell Biol. 1981;91(2 Pt 1):459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone Jr MA. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest. 1985;76(5):2003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone Jr MA. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol. 1985;121(3):394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980;62(5):945–52.

    Article  CAS  PubMed  Google Scholar 

  46. Buderus S, Siegmund B, Spahr R, Krutzfeldt A, Piper HM. Resistance of endothelial cells to anoxia-reoxygenation in isolated guinea pig hearts. Am J Physiol. 1989;257(2 Pt 2):H488–93.

    CAS  PubMed  Google Scholar 

  47. Mertens S, Noll T, Spahr R, Krutzfeldt A, Piper HM. Energetic response of coronary endothelial cells to hypoxia. Am J Physiol. 1990;258(3 Pt 2):H689–94.

    CAS  PubMed  Google Scholar 

  48. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003;83(4):1113–51.

    Article  CAS  PubMed  Google Scholar 

  49. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res. 2004;95(3):230–2. Epub 2004 Jul 2008.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579–88.

    Article  CAS  PubMed  Google Scholar 

  51. Schmiedl A, Richter J, Schnabel PA. Different preservation of myocardial capillary endothelial cells and cardiomyocytes during and after cardioplegic ischemia (25 degrees C) of canine hearts. Pathol Res Pract. 2002;198(4):281–90.

    Article  CAS  PubMed  Google Scholar 

  52. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol. 2000;32(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  53. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation. 2001;104(3):253–6.

    Article  CAS  PubMed  Google Scholar 

  54. Horie Y, Wolf R, Flores SC, McCord JM, Epstein CJ, Granger DN. Transgenic mice with increased copper/zinc-superoxide dismutase activity are resistant to hepatic leukostasis and capillary no-reflow after gut ischemia/reperfusion. Circ Res. 1998;83(7):691–6.

    Article  CAS  PubMed  Google Scholar 

  55. Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA. Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem. 1994;269(39):24156–62.

    CAS  PubMed  Google Scholar 

  56. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70(2):181–90. Epub 2006 Mar 2003.

    Article  CAS  PubMed  Google Scholar 

  57. Pearlstein DP, Ali MH, Mungai PT, Hynes KL, Gewertz BL, Schumacker PT. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arterioscler Thromb Vasc Biol. 2002;22(4):566–73.

    Article  CAS  PubMed  Google Scholar 

  58. Li JM, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1014–30.

    Article  CAS  PubMed  Google Scholar 

  59. Therade-Matharan S, Laemmel E, Duranteau J, Vicaut E. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1037–43. Epub 2004 Jun 1017.

    Article  CAS  PubMed  Google Scholar 

  60. Nohl H, Gille L, Kozlov A, Staniek K. Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep. 2003;8(3):135–41.

    Article  CAS  PubMed  Google Scholar 

  61. Cross AR, Jones OT. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986;237(1):111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Depré C, Taegtmeyer H. Metabolic aspects of programmed cell survival and cell death in the heart. Cardiovasc Res. 2000;45(3):538–48.

    Article  PubMed  Google Scholar 

  63. Swynghedauw B, Barrieux A. An introduction to the jargon of molecular biology. Part I. Cardiovasc Res. 1993;27(8):1414–20.

    Article  CAS  PubMed  Google Scholar 

  64. Kloner RA, Przyklenk K. Understanding the jargon: a glossary of terms used (and misused) in the study of ischaemia and reperfusion. Cardiovasc Res. 1993;27(2):162–6; discussion 167–71.

    Article  CAS  PubMed  Google Scholar 

  65. Elsässer A, Schlepper M, Klövekorn WP, Cai WJ, Zimmermann R, Müller KD, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997;96(9):2920–31.

    Article  PubMed  Google Scholar 

  66. Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 1999;79(2):609–34.

    CAS  PubMed  Google Scholar 

  67. Redwood SR, Ferrari R, Marber MS. Myocardial hibernation and stunning: from physiological principles to clinical practice. Heart. 1998;80(3):218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res. 1991;69(3):571–81.

    Article  CAS  PubMed  Google Scholar 

  69. Grover GJ, Dzwonczyk S, Parham CS, Sleph PG. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther. 1990;4(2):465–74.

    Article  CAS  PubMed  Google Scholar 

  70. Grover GJ, Dzwonczyk S, Sleph PG. Reduction of ischemic damage in isolated rat hearts by the potassium channel opener, RP 52891. Eur J Pharmacol. 1990;191(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  71. Auchampach JA, Maruyama M, Cavero I, Gross GJ. Blocking platelet activating factor receptors with RP 59227 decreases myocardial infarct size and the incidence of ventricular fibrillation. J Mol Cell Cardiol. 1991;23 Suppl 3:S52.

    Article  Google Scholar 

  72. Auchampach JA, Maruyama M, Cavero I, Gross GJ. Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation. 1992;86(1):311–9.

    Article  CAS  PubMed  Google Scholar 

  73. Heusch G. Hibernation, stunning, ischemic preconditioning – new paradigms in coronary disease? Z Kardiol. 1992;81(11):596–609.

    CAS  PubMed  Google Scholar 

  74. Sherman AJ, Klocke FJ, Decker RS, Decker ML, Kozlowski KA, Harris KR, et al. Myofibrillar disruption in hypocontractile myocardium showing perfusion-contraction matches and mismatches. Am J Physiol Heart Circ Physiol. 2000;278(4):H1320–34.

    CAS  PubMed  Google Scholar 

  75. Elsässer A, Schlepper M, Zimmermann R, Müller KD, Strasser R, Klövekorn WP, et al. The extracellular matrix in hibernating myocardium – a significant factor causing structural defects and cardiac dysfunction. Mol Cell Biochem. 1998;186(1–2):147–58.

    Article  PubMed  Google Scholar 

  76. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    Article  CAS  PubMed  Google Scholar 

  77. Lawson CS, Downey JM. Preconditioning: state of the art myocardial protection. Cardiovasc Res. 1993;27(4):542–50.

    Article  CAS  PubMed  Google Scholar 

  78. Ren Z, Yang Q, Floten HS, Furnary AP, Yim AP, He GW. ATP-sensitive potassium channel openers may mimic the effects of hypoxic preconditioning on the coronary artery. Ann Thorac Surg. 2001;71(2):642–7.

    Article  CAS  PubMed  Google Scholar 

  79. Bolli R. Why myocardial stunning is clinically important. Basic Res Cardiol. 1998;93(3):169–72.

    Article  CAS  PubMed  Google Scholar 

  80. Bolli R. The late phase of preconditioning. Circ Res. 2000;87(11):972–83.

    Article  CAS  PubMed  Google Scholar 

  81. Przyklenk K, Kloner RA. Ischemic preconditioning: exploring the paradox. Prog Cardiovasc Dis. 1998;40(6):517–47.

    Article  CAS  PubMed  Google Scholar 

  82. Marber MS. Ischemic preconditioning in isolated cells. Circ Res. 2000;86(9):926–31.

    Article  CAS  PubMed  Google Scholar 

  83. Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: from basic mechanisms to clinical applications. Pharmacol Ther. 2000;86(3):263–75.

    Article  CAS  PubMed  Google Scholar 

  84. Nonami Y. The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J. 1997;61(2):119–32.

    Article  CAS  PubMed  Google Scholar 

  85. Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock. 1997;8(2):86–94.

    Article  CAS  PubMed  Google Scholar 

  86. Peralta C, Closa D, Xaus C, Gelpi E, Rosello-Catafau J, Hotter G. Hepatic preconditioning in rats is defined by a balance of adenosine and xanthine. Hepatology. 1998;28(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  87. Rubino A, Yellon DM. Ischaemic preconditioning of the vasculature: an overlooked phenomenon for protecting the heart? Trends Pharmacol Sci. 2000;21(6):225–30.

    Article  CAS  PubMed  Google Scholar 

  88. Goto M, Cohen MV, Downey JM. The role of protein kinase c in ischemic preconditioning. Ann N Y Acad Sci. 1996;793:177–90.

    Article  CAS  PubMed  Google Scholar 

  89. O’Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res. 2000;87(10):845–55.

    Article  PubMed  Google Scholar 

  90. Simkhovich BZ, Przyklenk K, Kloner RA. Role of protein kinase C as a cellular mediator of ischemic preconditioning: a critical review. Cardiovasc Res. 1998;40(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  91. Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a target for myocardial protection. Pharmacol Ther. 2001;89(1):29–46.

    Article  CAS  PubMed  Google Scholar 

  92. Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther. 2001;89(1):47–65.

    Article  CAS  PubMed  Google Scholar 

  93. Dekker LR, Rademaker H, Vermeulen JT, Opthof T, Coronel R, Spaan JA, et al. Cellular uncoupling during ischemia in hypertrophied and failing rabbit ventricular myocardium: effects of preconditioning. Circulation. 1998;97(17):1724–30.

    Article  CAS  PubMed  Google Scholar 

  94. Lukas A, Botsford MW. Cardioprotection induced by ischemic preconditioning in the mammalian heart: effects on arrhythmogenesis. Can J Physiol Pharmacol. 1997;75(4):316–25.

    Article  CAS  PubMed  Google Scholar 

  95. Maulik N, Yoshida T, Engelman RM, Deaton D, Flack 3rd JE, Rousou JA, et al. Ischemic preconditioning attenuates apoptotic cell death associated with ischemia/reperfusion. Mol Cell Biochem. 1998;186(1–2):139–45.

    Article  CAS  PubMed  Google Scholar 

  96. Ferdinandy P, Szilvassy Z, Baxter GF. Adaptation to myocardial stress in disease states: is preconditioning a healthy heart phenomenon? Trends Pharmacol Sci. 1998;19(6):223–9.

    Article  CAS  PubMed  Google Scholar 

  97. de Jong JW, de Jonge R, Marchesani A, Janssen M, Bradamante S. Controversies in preconditioning. Cardiovasc Drugs Ther. 1997;10(6):767–73.

    Article  PubMed  Google Scholar 

  98. Walker DM, Walker JM, Pugsley WB, Pattison CW, Yellon DM. Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol. 1995;27(6):1349–57.

    Article  CAS  PubMed  Google Scholar 

  99. Yellon DM, Dana A. The preconditioning phenomenon: a tool for the scientist or a clinical reality? Circ Res. 2000;87(7):543–50.

    Article  CAS  PubMed  Google Scholar 

  100. Ganote CE, Armstrong SC. Adenosine and preconditioning in the rat heart. Cardiovasc Res. 2000;45(1):134–40.

    Article  CAS  PubMed  Google Scholar 

  101. Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995;268(5 Pt 2):H2157–61.

    CAS  PubMed  Google Scholar 

  102. Kloner RA, Yellon D. Does ischemic preconditioning occur in patients? J Am Coll Cardiol. 1994;24(4):1133–42.

    Article  CAS  PubMed  Google Scholar 

  103. Ostadal B, Ostadalova I, Dhalla NS. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev. 1999;79(3):635–59.

    CAS  PubMed  Google Scholar 

  104. Wu ZK, Tarkka MR, Pehkonen E, Kaukinen L, Honkonen EL, Kaukinen S. Ischaemic preconditioning has a beneficial effect on left ventricular haemodynamic function after a coronary artery biopass grafting operation. Scand Cardiovasc J. 2000;34(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  105. Li G, Chen S, Lu E, Luo W. Cardiac ischemic preconditioning improves lung preservation in valve replacement operations. Ann Thorac Surg. 2001;71(2):631–5.

    Article  CAS  PubMed  Google Scholar 

  106. Baxter GF, Yellon DM. Ischaemic preconditioning of myocardium: a new paradigm for clinical cardioprotection? Br J Clin Pharmacol. 1994;38(5):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shizukuda Y, Iwamoto T, Mallet RT, Downey HF. Hypoxic preconditioning attenuates stunning caused by repeated coronary artery occlusions in dog heart. Cardiovasc Res. 1993;27(4):559–64.

    Article  CAS  PubMed  Google Scholar 

  108. Matsuda M, Catena TG, Vander Heide RS, Jennings RB, Reimer KA. Cardiac protection by ischaemic preconditioning is not mediated by myocardial stunning. Cardiovasc Res. 1993;27(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  109. Thornton J, Striplin S, Liu GS, Swafford A, Stanley AW, Van Winkle DM, et al. Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol. 1990;259(6 Pt 2):H1822–5.

    CAS  PubMed  Google Scholar 

  110. Matsuyama N, Leavens JE, McKinnon D, Gaudette GR, Aksehirli TO, Krukenkamp IB. Ischemic but not pharmacological preconditioning requires protein synthesis. Circulation. 2000;102(19 Suppl 3):III312–8.

    CAS  PubMed  Google Scholar 

  111. Rizvi A, Tang XL, Qiu Y, Xuan YT, Takano H, Jadoon AK, et al. Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning. Am J Physiol. 1999;277(3 Pt 2):H874–84.

    CAS  PubMed  Google Scholar 

  112. Rowland RT, Meng X, Cleveland JC, Meldrum DR, Harken AH, Brown JM. Cardioadaptation induced by cyclic ischemic preconditioning is mediated by translational regulation of de novo protein synthesis. J Surg Res. 1997;71(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  113. Murry CE, Richard VJ, Jennings RB, Reimer KA. Preconditioning with ischemia: is the protective effect mediated by free radical induced myocardial stunning? (Abstract). Circulation. 1988;78(Suppl II):77.

    Google Scholar 

  114. Osada M, Takeda S, Sato T, Komori S, Tamura K. The protective effect of preconditioning on reperfusion-induced arrhythmia is lost by treatment with superoxide dismutase. Jpn Circ J. 1994;58(4):259–63.

    Article  CAS  PubMed  Google Scholar 

  115. Burke TM, Wolin MS. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol. 1987;252(4 Pt 2):H721–32.

    CAS  PubMed  Google Scholar 

  116. Ambrosio G, Golino P, Pascucci I, Rosolowsky M, Campbell WB, DeClerck F, et al. Modulation of platelet function by reactive oxygen metabolites. Am J Physiol. 1994;267(1 Pt 2):H308–18.

    CAS  PubMed  Google Scholar 

  117. Walker DM, Yellon DM. Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res. 1992;26(8):734–9.

    Article  CAS  PubMed  Google Scholar 

  118. Jabr RI, Cole WC. Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circ Res. 1993;72(6):1229–44.

    Article  CAS  PubMed  Google Scholar 

  119. Kuo SS, Saad AH, Koong AC, Hahn GM, Giaccia AJ. Potassium-channel activation in response to low doses of gamma-irradiation involves reactive oxygen intermediates in nonexcitatory cells. Proc Natl Acad Sci U S A. 1993;90(3):908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tokube K, Kiyosue T, Arita M. Openings of ATP sensitive potassium channels by different species of oxygen free radicals. Circulation. 1994;90:I-525.

    Article  Google Scholar 

  121. Ambrosio G, Tritto I, Shang UL, Eramo N, D’Andrea D, Ella PP, et al. Oxygen radicals may exert negative inotropic effects via K+ -channel stimulation (abstract). Circulation. 1994;90:I-428.

    Google Scholar 

  122. Kukreja RC, Kontos MC, Loesser KE, Batra SK, Qian YZ, Gbur Jr CJ, et al. Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol. 1994;267(6 Pt 2):H2213–9.

    CAS  PubMed  Google Scholar 

  123. Brown JM, Anderson BO, Repine JE, Shanley PF, White CW, Grosso MA, et al. Neutrophils contribute to TNF induced myocardial tolerance to ischaemia. J Mol Cell Cardiol. 1992;24(5):485–95.

    Article  CAS  PubMed  Google Scholar 

  124. Brown JM, White CW, Terada LS, Grosso MA, Shanley PF, Mulvin DW, et al. Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 1990;87(13):5026–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Repine JE. Oxidant-antioxidant balance: some observations from studies of ischemia-reperfusion in isolated perfused rat hearts. Am J Med. 1991;91(3C):45S–53.

    Article  CAS  PubMed  Google Scholar 

  126. Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res. 2002;55(3):466–73.

    Article  CAS  PubMed  Google Scholar 

  127. Jerome SN, Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion. Am J Physiol. 1995;268(5 Pt 2):H2063–7.

    CAS  PubMed  Google Scholar 

  128. Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, et al. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation. 2001;103(12):1624–30.

    Article  CAS  PubMed  Google Scholar 

  129. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–3.

    Article  CAS  PubMed  Google Scholar 

  130. Loukogeorgakis SP, Panagiotidou AT, Yellon DM, Deanfield JE, MacAllister RJ. Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm. Circulation. 2006;113(7):1015–9. Epub 2006 Feb 1013.

    Article  PubMed  Google Scholar 

  131. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–9.

    Article  PubMed  Google Scholar 

  132. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450–6.

    Article  CAS  PubMed  Google Scholar 

  133. Wang WZ, Stepheson LL, Fang XH, Khiabani KT, Zamboni WA. Ischemic preconditioning-induced microvascular protection at a distance. J Reconstr Microsurg. 2004;20(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  134. Broadhead MW, Kharbanda RK, Peters MJ, MacAllister RJ. Katp channel activation induces ischemic preconditioning of the endothelium in humans in vivo. Circulation. 2004;110(15):2077–82. Epub 2004 Oct 2074.

    Article  CAS  PubMed  Google Scholar 

  135. Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation. 1996;94(6):1423–9.

    Article  CAS  PubMed  Google Scholar 

  136. Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nature. 2010;28(3):249–55. Epub 2010 Feb 2014.

    CAS  Google Scholar 

  137. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32.

    PubMed  Google Scholar 

  138. Haendeler J, Hoffmann J, Zeiher AM, Dimmeler S. Antioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins. Circulation. 2004;110(7):856–61. Epub 2004 Aug 2002.

    Article  CAS  PubMed  Google Scholar 

  139. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996;74(1):86–107.

    CAS  PubMed  Google Scholar 

  140. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9.

    Article  CAS  PubMed  Google Scholar 

  141. Bardales RH, Hailey LS, Xie SS, Schaefer RF, Hsu SM. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol. 1996;149(3):821–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation. 1997;95(2):320–3.

    Article  CAS  PubMed  Google Scholar 

  143. Reiss K, Cheng W, Giordano A, De Luca A, Li B, Kajstura J, et al. Myocardial infarction is coupled with the activation of cyclins and cyclin-dependent kinases in myocytes. Exp Cell Res. 1996;225(1):44–54.

    Article  CAS  Google Scholar 

  144. Kagisaki K, editor. Bcl-2 prevents hypoxia-reoxigenation induced cell-death and DNA damage in adult rat cardiomyocytes: an evidence for endogenous myocardial protective system against ischemia-reperfusion injury. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  145. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res. 1994;75(3):426–33.

    Article  CAS  PubMed  Google Scholar 

  146. Maulik N, editor. Reperfusion of ischemic myocardium induces apoptosis and DNA laddering with enhanced expression of protooncogene c-myc mRNA. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  147. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79(5):949–56.

    Article  CAS  PubMed  Google Scholar 

  148. Sakuragi N, Ishikura H, Hareyama H, Takeda N, Hirahatake K, Ohkouchi T, et al. [Apoptosis in human trophoblastic cells identified by in situ nick end. Labeling of fragmented DNA]. Nihon Sanka Fujinka Gakkai Zasshi. 1994;46(6):533–4.

    CAS  PubMed  Google Scholar 

  149. Scarabelli TM, Knight RA, Rayment NB, Cooper TJ, Stephanou A, Brar BK, et al. Quantitative assessment of cardiac myocyte apoptosis in tissue sections using the fluorescence-based tunel technique enhanced with counterstains. J Immunol Methods. 1999;228(1–2):23–8.

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka M, Gunawan F, Terry RD, Inagaki K, Caffarelli AD, Hoyt G, et al. Inhibition of heart transplant injury and graft coronary artery disease after prolonged organ ischemia by selective protein kinase C regulators. J Thorac Cardiovasc Surg. 2005;129(5):1160–7.

    Article  CAS  PubMed  Google Scholar 

  151. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94(4):1621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med. 1996;335(16):1190–6.

    Article  CAS  PubMed  Google Scholar 

  153. James TN, Terasaki F, Pavlovich ER, Vikhert AM. Apoptosis and pleomorphic micromitochondriosis in the sinus nodes surgically excised from five patients with the long QT syndrome. J Lab Clin Med. 1993;122(3):309–23.

    CAS  PubMed  Google Scholar 

  154. Satoh M, Hiramori K, Tamura G, Satodate R. [Apoptosis in the process from viral myocarditis to dilated cardiomyopathy]. Nihon Rinsho. 1996;54(7):1982–5.

    CAS  PubMed  Google Scholar 

  155. Yao M, Keogh A, Spratt P, dos Remedios CG, Kiessling PC. Elevated DNase I levels in human idiopathic dilated cardiomyopathy: an indicator of apoptosis? J Mol Cell Cardiol. 1996;28(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  156. Moalic JM, Moazami-Goudarzi K, Thiem NV, Delcayre C, Bercovici J, Mouas C, et al. Hormonal induction of c-fos and HSP68 mRNAs on an isolated coronary perfused adult rat heart. Arch Int Physiol Biochim Biophys. 1992;100(2):165–70.

    CAS  PubMed  Google Scholar 

  157. Knight RJ, Buxton DB. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun. 1996;218(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  158. Brand T, Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdouw PD, et al. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res. 1992;71(6):1351–60.

    Article  CAS  PubMed  Google Scholar 

  159. Wechsler AS, Entwistle 3rd JW, Ding M, Yeh Jr T, Jakoi ER. Myocardial stunning: association with altered gene expression. J Card Surg. 1994;9(3 Suppl):537–42.

    CAS  PubMed  Google Scholar 

  160. Lad N, Williams TJ, Booth RF. Neutrophil infiltration into the ischaemic/reperfused rabbit isolated myocardium: effect of PF-5901 and cycloheximide. Eur J Pharmacol. 1992;223(2–3):163–71.

    Article  CAS  PubMed  Google Scholar 

  161. Pabla R, editor. Apoptosis is mediated by ice-like proteases in ventricular myocytes. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  162. Yoshida K, Inui M, Harada K, Saido TC, Sorimachi Y, Ishihara T, et al. Reperfusion of rat heart after brief ischemia induces proteolysis of calspectin (nonerythroid spectrin or fodrin) by calpain. Circ Res. 1995;77(3):603–10.

    Article  CAS  PubMed  Google Scholar 

  163. Iwamoto H, editor. Calpain inhibitor-1 reduced the apoptosis in the ischemia/reperfused rat hearts. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  164. Yoshida K, Sorimachi Y, Fujiwara M, Hironaka K. Calpain is implicated in rat myocardial injury after ischemia or reperfusion. Jpn Circ J. 1995;59(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  165. Matsumura Y, Saeki E, Inoue M, Hori M, Kamada T, Kusuoka H. Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res. 1996;79(3):447–54.

    Article  CAS  PubMed  Google Scholar 

  166. Griffiths EJ, Halestrap AP. Protection by cyclosporin a of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25(12):1461–9.

    Article  CAS  PubMed  Google Scholar 

  167. Komuro I, editor. Overexpression of tyrosine kinase induces apoptosis in the hearts of transgenic mice. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  168. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, et al. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995;96(5):2247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, et al. Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol. 1996;28(1):247–52.

    Article  CAS  PubMed  Google Scholar 

  170. Wan S, DeSmet JM, Barvais L, Goldstein M, Vincent JL, LeClerc JL. Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1996;112(3):806–11.

    Article  CAS  PubMed  Google Scholar 

  171. Kawamura T, Wakusawa R, Okada K, Inada S. Elevation of cytokines during open heart surgery with cardiopulmonary bypass: participation of interleukin 8 and 6 in reperfusion injury. Can J Anaesth. 1993;40(11):1016–21.

    Article  CAS  PubMed  Google Scholar 

  172. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93(4):704–11.

    Article  CAS  PubMed  Google Scholar 

  173. Genestier L, Bonnefoy-Berard N, Rouault JP, Flacher M, Revillard JP. Tumor necrosis factor-alpha up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. Int Immunol. 1995;7(4):533–40.

    Article  CAS  PubMed  Google Scholar 

  174. Nelson SK, Wong GH, McCord JM. Leukemia inhibitory factor and tumor necrosis factor induce manganese superoxide dismutase and protect rabbit hearts from reperfusion injury. J Mol Cell Cardiol. 1995;27(1):223–9.

    Article  CAS  PubMed  Google Scholar 

  175. Eddy LJ, Goeddel DV, Wong GH. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun. 1992;184(2):1056–9.

    Article  CAS  PubMed  Google Scholar 

  176. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor i in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A. 1995;92(17):8031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lefer AM, Tsao P, Aoki N, Palladino Jr MA. Mediation of cardioprotection by transforming growth factor-beta. Science. 1990;249(4964):61–4.

    Article  CAS  PubMed  Google Scholar 

  178. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996;2(5):534–9.

    Article  CAS  PubMed  Google Scholar 

  179. Yaoita H, editor. Two-sided effects of interleukin-6 on myocardial reperfusion injury. Abstract. 69th American Heart Association meeting, New Orleans, 0–13 Nov 1996; 1996.

    Google Scholar 

  180. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98(12):2854–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, et al. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res. 1995;219(1):110–21.

    Article  CAS  PubMed  Google Scholar 

  182. Ono M, editor. Expression of bcl-2 protein, an inhibitor of apoptosis, in rabbit hearts with myocardial infarction. Abstract. 69th American Heart Association meeting, New Orleans, 0–13 Nov 1996; 1996.

    Google Scholar 

  183. Sawa Y, Bai HZ, Suzuki K, Tsujimoto Y, Matsuda H. Overexpression of Bcl-2 gene improves the myocardial tolerance to ischemia-reperfusion by preventing DNA fragmentation. Circulation. 1995;92(Suppl I):I-772.

    Google Scholar 

  184. Pierzchalski P, editor. P53 activates apoptosis in adult ventricular myocytes via the up-regulation of the cellular renin-angiotensin system. Abstract. 69th American Heart Association meeting, New Orleans, 10–13 Nov 1996; 1996.

    Google Scholar 

  185. Lambert CM, Roy M, Robitaille GA, Richard DE, Bonnet S. HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism. Cardiovasc Res. 2010;88(1):196–204. Epub 2010 May 2024.

    Article  CAS  PubMed  Google Scholar 

  186. Marzo F, Lavorgna A, Coluzzi G, Santucci E, Tarantino F, Rio T, et al. Erythropoietin in heart and vessels: focus on transcription and signalling pathways. J Thromb Thrombolysis. 2008;26(3):183–7. Epub 2008 Mar 2013.

    Article  CAS  PubMed  Google Scholar 

  187. Braunwald E. The aggressive treatment of acute myocardial infarction. Circulation. 1985;71(6):1087–92.

    Article  CAS  PubMed  Google Scholar 

  188. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40(6):633–44.

    CAS  PubMed  Google Scholar 

  189. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56(4):978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Koren G, Weiss AT, Hasin Y, Appelbaum D, Welber S, Rozenman Y, et al. Prevention of myocardial damage in acute myocardial ischemia by early treatment with intravenous streptokinase. N Engl J Med. 1985;313(22):1384–9.

    Article  CAS  PubMed  Google Scholar 

  191. Hearse DJ, Humphrey SM, Nayler WG, Slade A, Border D. Ultrastructural damage associated with reoxygenation of the anoxic myocardium. J Mol Cell Cardiol. 1975;7(5):315–24.

    Article  CAS  PubMed  Google Scholar 

  192. Jacob HS, Vercellotti GM. Granulocyte mediated endothelial injury: oxidant damage amplified by lactoferrin and platelet activating factor. In: Halliwell B, editor. Oxygen radicals and tissue injury. Bethesda: Federation of the American Society of Experimental Biology; 1988. p. 57–62.

    Google Scholar 

  193. Simpson PJ, Fantone JC, Lucchesi BR. Myocardial ischemia and reperfusion injury: oxygen radicals and the role of the neutrophil. In: Halliwell B, editor. Oxygen radicals and tissue injury. Bethesda: Federation of the American Society of Experimental Biology; 1988. p. 57–62.

    Google Scholar 

  194. Tamura Y, Chi LG, Driscoll Jr EM, Hoff PT, Freeman BA, Gallagher KP, et al. Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in canine heart. Circ Res. 1988;63(5):944–59.

    Article  CAS  PubMed  Google Scholar 

  195. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res. 1984;54(3):277–85.

    Article  CAS  PubMed  Google Scholar 

  196. Werns SW, Simpson PJ, Mickelson JK, Shea MJ, Pitt B, Lucchesi BR. Sustained limitation by superoxide dismutase of canine myocardial injury due to regional ischemia followed by reperfusion. J Cardiovasc Pharmacol. 1988;11(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  197. Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978;298(12):659–68.

    Article  CAS  PubMed  Google Scholar 

  198. Jarasch ED, Bruder G, Heid HW. Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand Suppl. 1986;548:39–46.

    CAS  PubMed  Google Scholar 

  199. Werns SW, Shea MJ, Driscoll EM, Cohen C, Abrams GD, Pitt B, et al. The independent effects of oxygen radical scavengers on canine infarct size. Reduction by superoxide dismutase but not catalase. Circ Res. 1985;56(6):895–8.

    Article  CAS  PubMed  Google Scholar 

  200. Eng C, Cho S, Factor SM, Kirk ES. A nonflow basis for the vulnerability of the subendocardium. J Am Coll Cardiol. 1987;9(2):374–9.

    Article  CAS  PubMed  Google Scholar 

  201. Arroyo CM, Kramer JH, Leiboff RH, Mergner GW, Dickens BF, Weglicki WB. Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radic Biol Med. 1987;3(5):313–6.

    Article  CAS  PubMed  Google Scholar 

  202. Blasig IE, Ebert B, Löwe H. Identification of free radicals trapped during myocardial ischemia in vitro by ESR. Stud Biophys. 1986;116:35–42.

    CAS  Google Scholar 

  203. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987;84(5):1404–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Bolli R. Oxygen-derived free radicals and postischemic myocardial dysfunction (“stunned myocardium”). J Am Coll Cardiol. 1988;12(1):239–49.

    Article  CAS  PubMed  Google Scholar 

  205. Zweier JL, Kuppusamy P, Lutty GA. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci U S A. 1988;85(11):4046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Janoff A, Zeligs JD. Vascular injury and lysis of basement membrane in vitro by neutral protease of human leukocytes. Science. 1968;161(842):702–4.

    Article  CAS  PubMed  Google Scholar 

  207. Smedly LA, Tonnesen MG, Sandhaus RA, Haslett C, Guthrie LA, Johnston Jr RB, et al. Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase. J Clin Invest. 1986;77(4):1233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jennings RB. Myocardial ischemia-observations, definitions and speculations. J Mol Cell Cardiol. 1970;1:345–9.

    Article  Google Scholar 

  209. Marbán E, Koretsune Y, Corretti M, Chacko VP, Kusuoka H. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation. 1989;80(6 Suppl):IV17–22.

    PubMed  Google Scholar 

  210. Opie LH. Role of calcium and other ions in reperfusion injury. Cardiovasc Drugs Ther. 1991;5 Suppl 2:237–47.

    Article  PubMed  Google Scholar 

  211. Opie LH, Coetzee WA. Role of calcium ions in reperfusion arrhythmias: relevance to pharmacologic intervention. Cardiovasc Drugs Ther. 1988;2(5):623–36.

    Article  CAS  PubMed  Google Scholar 

  212. Coetzee WA, Opie LH. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res. 1987;61(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  213. Saman S, Coetzee WA, Opie LH. Inhibition by simulated ischemia or hypoxia of delayed afterdepolarizations provoked by cyclic amp: significance for ischemic and reperfusion arrhythmias. J Mol Cell Cardiol. 1988;20(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  214. Allshire A, Piper HM, Cuthbertson KS, Cobbold PH. Cytosolic free Ca2+ in single rat heart cells during anoxia and reoxygenation. Biochem J. 1987;244(2):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Thandroyen FT, McCarthy J, Opie LH. Reenergization in setting of calcium overload: potential cause of reoxygenation induced ventricular fibrillation in guinea-pig heart (abstract). Circulation. 1986;74(Suppl II):II684.

    Google Scholar 

  216. Kusama Y, Bernier M, Hearse DJ. Singlet oxygen-induced arrhythmias. Dose- and light-response studies for photoactivation of rose bengal in the rat heart. Circulation. 1989;80(5):1432–48.

    Article  CAS  PubMed  Google Scholar 

  217. Hearse DJ, Tosaki A. Free radicals and calcium: simultaneous interacting triggers as determinants of vulnerability to reperfusion-induced arrhythmias in the rat heart. J Mol Cell Cardiol. 1988;20(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  218. Allen IS, Cohen NM, Dhallan RS, Gaa ST, Lederer WJ, Rogers TB. Angiotensin ii increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms. Circ Res. 1988;62(3):524–34.

    Article  CAS  PubMed  Google Scholar 

  219. Sharma AD, Saffitz JE, Lee BI, Sobel BE, Corr PB. Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. J Clin Invest. 1983;72(3):802–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Dzau VJ. Short- and long-term determinants of cardiovascular function and therapy: contributions of circulating and tissue renin-angiotensin systems. J Cardiovasc Pharmacol. 1989;14 (Suppl 4):S1–5.

    CAS  PubMed  Google Scholar 

  221. du Toit EF, Opie LH. Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res. 1992;70(5):960–7.

    Article  PubMed  Google Scholar 

  222. Shine KI, Douglas AM, Ricchiuti NV. Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle. Implications for myocardial preservation. Circ Res. 1978;43(5):712–20.

    Article  CAS  PubMed  Google Scholar 

  223. Tani M, Neely JR. Mechanisms of reduced reperfusion injury by low Ca2+ and/or high K+. Am J Physiol. 1990;258(4 Pt 2):H1025–31.

    CAS  PubMed  Google Scholar 

  224. Tosaki A, Koltai M, Braquet P. Effects of low extracellular sodium concentration on reperfusion induced arrhythmias: changes in the myocardial sodium, potassium and calcium contents in isolated guinea pig hearts. Cardiovasc Res. 1989;23(12):993–1000.

    Article  CAS  PubMed  Google Scholar 

  225. Ver Donck L, Borgers M. Myocardial protection by R 56865: a new principle based on prevention of ion channel pathology. Am J Physiol. 1991;261(6 Pt 2):H1828–35.

    CAS  PubMed  Google Scholar 

  226. Meng H, Pierce GN. Involvement of sodium in the protective effect of 5-(N, N-dimethyl)-amiloride on ischemia-reperfusion injury in isolated rat ventricular wall. J Pharmacol Exp Ther. 1991;256(3):1094–100.

    CAS  PubMed  Google Scholar 

  227. Kleyman TR, Cragoe Jr EJ. Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988;105(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  228. Bielefeld DR, Hadley RW, Vassilev PM, Hume JR. Membrane electrical properties of vesicular Na-Ca exchange inhibitors in single atrial myocytes. Circ Res. 1986;59(4):381–9.

    Article  CAS  PubMed  Google Scholar 

  229. Garcia ML, King VF, Shevell JL, Slaughter RS, Suarez-Kurtz G, Winquist RJ, et al. Amiloride analogs inhibit l-type calcium channels and display calcium entry blocker activity. J Biol Chem. 1990;265(7):3763–71.

    CAS  PubMed  Google Scholar 

  230. Pierce GN, Cole WC, Liu K, Massaeli H, Maddaford TG, Chen YJ, et al. Modulation of cardiac performance by amiloride and several selected derivatives of amiloride. J Pharmacol Exp Ther. 1993;265(3):1280–91.

    CAS  PubMed  Google Scholar 

  231. Cummings JR. Electrolyte changes in heart tissue and coronary arterial and venous plasma following coronary occlusion. Circ Res. 1960;8:865–70.

    Article  CAS  PubMed  Google Scholar 

  232. Jennings RB, Sommers HM, Kaltenbach JP, West JJ. Electrolyte alterations in acute myocardial ischemic injury. Circ Res. 1964;14:260–9.

    Article  CAS  PubMed  Google Scholar 

  233. Liu JX, Tanonaka K, Yamamoto K, Takeo S. Propafenone and disopyramide enhance post-ischemic contractile and metabolic recovery of perfused hearts. Eur J Pharmacol. 1993;250(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  234. Parker JO, Chiong MA, West RO, Case RB. The effect of ischemia and alterations of heart rate on myocardial potassium balance in man. Circulation. 1970;42(2):205–17.

    Article  CAS  PubMed  Google Scholar 

  235. Weiss J, Shine KI. Extracellular K+ accumulation during myocardial ischemia in isolated rabbit heart. Am J Physiol. 1982;242(4):H619–28.

    CAS  PubMed  Google Scholar 

  236. Carmeliet E. Cardiac transmembrane potentials and metabolism. Circ Res. 1978;42(5):577–87.

    Article  CAS  PubMed  Google Scholar 

  237. Coronel R, Fiolet JW, Wilms-Schopman FJ, Schaapherder AF, Johnson TA, Gettes LS, et al. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation. 1988;77(5):1125–38.

    Article  CAS  PubMed  Google Scholar 

  238. Saint KM, Abraham S, MacLeod BA, McGough J, Yoshida N, Walker MJ. Ischemic but not reperfusion arrhythmias depend upon serum potassium concentration. J Mol Cell Cardiol. 1992;24(7):701–9.

    Article  CAS  PubMed  Google Scholar 

  239. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305(5930):147–8.

    Article  CAS  PubMed  Google Scholar 

  240. Mitani A, Kinoshita K, Fukamachi K, Sakamoto M, Kurisu K, Tsuruhara Y, et al. Effects of glibenclamide and nicorandil on cardiac function during ischemia and reperfusion in isolated perfused rat hearts. Am J Physiol. 1991;261(6 Pt 2):H1864–71.

    CAS  PubMed  Google Scholar 

  241. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by atp-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol. 1993;265(5 Pt 2):H1809–18.

    CAS  PubMed  Google Scholar 

  242. Venkatesh N, Stuart JS, Lamp ST, Alexander LD, Weiss JN. Activation of ATP-sensitive K+ channels by cromakalim. Effects on cellular K+ loss and cardiac function in ischemic and reperfused mammalian ventricle. Circ Res. 1992;71(6):1324–33.

    Article  CAS  PubMed  Google Scholar 

  243. Tosaki A, Szerdahelyi P, Engelman RM, Das DK. Potassium channel openers and blockers: do they possess proarrhythmic or antiarrhythmic activity in ischemic and reperfused rat hearts? J Pharmacol Exp Ther. 1993;267(3):1355–62.

    CAS  PubMed  Google Scholar 

  244. Cavero I, Premmereur J. Atp sensitive potassium channel openers are of potential benefit in ischaemic heart disease. Cardiovasc Res. 1994;28(1):32–3.

    Article  CAS  PubMed  Google Scholar 

  245. Siegl P. Blockers of ATP sensitive potassium current are of potential benefit in ischaemic heart disease. Cardiovasc Res. 1994;28(1):31–2.

    Article  CAS  PubMed  Google Scholar 

  246. Adgey AA, Allen JD, Geddes JS, James RG, Webb SW, Zaidi SA, et al. Acute phase of myocardial infarction. Lancet. 1971;2(7723):501–4.

    Article  CAS  PubMed  Google Scholar 

  247. Campbell RW, Murray A, Julian DG. Ventricular arrhythmias in first 12 hours of acute myocardial infarction. Natural history study. Br Heart J. 1981;46(4):351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Oliver MF. Sounding board. Risks of correcting the risks of coronary disease and stroke with drugs. N Engl J Med. 1982;306(5):297–8.

    Article  CAS  PubMed  Google Scholar 

  249. Curtis MJ, Pugsley MK, Walker MJ. Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res. 1993;27(5):703–19.

    Article  CAS  PubMed  Google Scholar 

  250. Wollenberger A, Krause EG, Heier G. Stimulation of 3',5'-cyclic AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Commun. 1969;36(4):664–70.

    Article  CAS  PubMed  Google Scholar 

  251. Podzuweit T, Binz KH, Nennstiel P, Flaig W. The anti-arrhythmic effects of myocardial ischaemia. Relation to reperfusion arrhythmias? Cardiovasc Res. 1989;23(2):81–90.

    Article  CAS  PubMed  Google Scholar 

  252. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W. Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: locally mediated release. Circ Res. 1984;55(5):689–701.

    Article  PubMed  Google Scholar 

  253. Curtis MJ, Botting JH, Hearse DJ, Walker MJA. The sympathetic nervous system catecholamines and ischaemia-induced arrhythmias: dependence upon serum potassium concentration. In: Brachmann J, Schömig A, editors. Adrenergic system and ventricular arrhythmias in myocardial infarction. Heidelberg: Springer; 1989. p. 206–19.

    Google Scholar 

  254. Priori S, Schwartz PJ. Catecholamine-dependent cardiac arrhythmias: mechanisms and implication. In: Brachmann J, Schömig A, editors. Adrenergic system and ventricular arrhythmias in myocardial infarction. Heidelberg: Springer; 1989. p. 239–47.

    Chapter  Google Scholar 

  255. Giotti A, Guidotti A, Mannaioni PF, Zilletti L. The influences of andrenotropic drugs and noradrenaline on the histamine release in cardiac anaphylaxis in vitro. J Physiol. 1966;184(4):924–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Mannaioni PF. Physiology and pharmacology of cardiac histamine, revisited. In: Ganellin CR, Schwartz JC, editors. Frontiers in histamine research. London: J. Wright; 1985. p. 236–97.

    Google Scholar 

  257. Harvey SC. Studies on myocardial histamine. Effects of catecholamine-depleting drugs. Arch Int Pharmacodyn Ther. 1978;232(1):141–9.

    CAS  PubMed  Google Scholar 

  258. Ryan MJ, Brody MJ. Distribution of histamine in the canine autonomic nervous system. J Pharmacol Exp Ther. 1970;174(1):123–32.

    CAS  PubMed  Google Scholar 

  259. Wolff AA, Levi R. Histamine and cardiac arrhythmias. Circ Res. 1986;58(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  260. Dai S. Effects of SK&F 93479 on experimentally induced ventricular arrhythmias in dogs, rats and mice. Agents Actions. 1984;15(3–4):131–6.

    Article  CAS  PubMed  Google Scholar 

  261. Dai S. Ventricular histamine concentrations and arrhythmias during acute myocardial ischaemia in rats. Agents Actions. 1987;21(1–2):66–71.

    Article  CAS  PubMed  Google Scholar 

  262. Rochette L, Yao-Kouame J, Bralet J, Opie LH. Effects of promethazine on ischemic and reperfusion arrhythmias in rat heart. Fundam Clin Pharmacol. 1988;2(5):385–97.

    Article  CAS  PubMed  Google Scholar 

  263. Berkowitz BA, Lee CH, Spector S. Disposition of serotonin in the rat blood vessels and heart. Clin Exp Pharmacol Physiol. 1974;1:397–400.

    Article  CAS  Google Scholar 

  264. Sole MJ, Shum A, Van Loon GR. Serotonin metabolism in the normal and failing hamster heart. Circ Res. 1979;45(5):629–34.

    Article  CAS  PubMed  Google Scholar 

  265. Kaumann AJ. A classification of heart serotonin receptors. Naunyn Schmiedebergs Arch Pharmacol. 1983;322(Suppl):R42.

    Google Scholar 

  266. el-Mahdy SA. 5-hydroxytryptamine (serotonin) enhances ventricular arrhythmias induced by acute coronary artery ligation in rats. Res Commun Chem Pathol Pharmacol. 1990;68(3):383–6.

    CAS  PubMed  Google Scholar 

  267. Coker SJ, Dean HG, Kane KA, Parratt JR. The effects of ICS 205-930, a 5-HT antagonist, on arrhythmias and catecholamine release during canine myocardial ischaemia and reperfusion. Eur J Pharmacol. 1986;127(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  268. Williams FM, Rothaul AL, Kane KA, Parratt JR. Antiarrhythmic and electrophysiological effects of ics 205-930, an antagonist of 5-hydroxytryptamine at peripheral receptors. J Cardiovasc Pharmacol. 1985;7(3):550–5.

    Article  CAS  PubMed  Google Scholar 

  269. Saxena PR, Villalón CM. 5-hydroxytryptamine: a chameleon in the heart. Trends Pharmacol Sci. 1991;12(6):223–7.

    Article  PubMed  Google Scholar 

  270. Corr PB, Gross RW, Sobel BE. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984;55(2):135–54.

    Article  CAS  PubMed  Google Scholar 

  271. Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE. Lysophosphoglycerides and ventricular fibrillation early after onset of ischemia. J Mol Cell Cardiol. 1987;19 Suppl 5:45–53.

    Article  CAS  PubMed  Google Scholar 

  272. Kiyosue T, Arita M. Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pflugers Arch. 1986;406(3):296–302.

    Article  CAS  PubMed  Google Scholar 

  273. Nakaya H, Kimura S, Kanno M. Suppression of lysophosphatidylcholine-induced abnormal automaticity by verapamil in canine purkinje fibers. Jpn J Pharmacol. 1984;36(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  274. Duan J, Moffat P. Effects of D, L-carnitine on lysophosphatidylcholine and reperfusion-induced mechanisms of arrhythmia. J Mol Cell Cardiol. 1990;22(Suppl I):S41.

    Article  Google Scholar 

  275. van der Vusse GJ, Prinzen FW, van Bilsen W, Engels W, Reneman RS. Accumulation of lipids and lipid intermediaries in the heart during ischaemia. Basic Res Cardiol. 1989;84:157–66.

    Article  Google Scholar 

  276. Gross RW, Sobel BE. Rabbit myocardial cytosolic lysophospholipase. Purification, characterization, and competitive inhibition by L-palmitoyl carnitine. J Biol Chem. 1983;258(8):5221–6.

    CAS  PubMed  Google Scholar 

  277. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest. 1989;83(3):927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Braquet P. Ginkgolides: chemistry, biology, pharmacology and clinical perspectives. Barcelona: JR Prous Science Publishers; 1989.

    Google Scholar 

  279. Montrucchio G, Camussi G, Tetta C, Emanuelli G, Orzan F, Libero L, et al. Intravascular release of platelet-activating factor during atrial pacing. Lancet. 1986;2(8501):293.

    Article  CAS  PubMed  Google Scholar 

  280. Annable CR, McManus LM, Carey KD, Pinckard RN. Isolation of platelet activating factor (PAF) from ischaemic babboon myocardium. Fed Proc. 1985;44:1271.

    Google Scholar 

  281. Piper PJ, Stewart AG. Coronary vasoconstriction in the rat, isolated perfused heart induced by platelet-activating factor is mediated by leukotriene C4. Br J Pharmacol. 1986;88(3):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wainwright CL, Parratt JR, Bigaud M. The effects of paf antagonists on arrhythmias and platelets during acute myocardial ischaemia and reperfusion. Eur Heart J. 1989;10(3):235–43.

    CAS  PubMed  Google Scholar 

  283. Koltai M, Tosaki A, Hosford D, Esanu A, Braquet P. Effect of BN 50739, a new platelet activating factor antagonist, on ischaemia induced ventricular arrhythmias in isolated working rat hearts. Cardiovasc Res. 1991;25(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  284. Stahl GL, Terashita ZI, Lefer AM. Role of platelet activating factor in propagation of cardiac damage during myocardial ischemia. J Pharmacol Exp Ther. 1988;244:898–904.

    CAS  PubMed  Google Scholar 

  285. Karim SM, Sandler M, Williams ED. Distribution of prostaglandins in human tissues. Br J Pharmacol Chemother. 1967;31:340–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Karim SM, Hillier K, Devlin J. Distribution of prostaglandins E1, E2, F1-alpha and F2-alpha in some animal tissues. J Pharm Pharmacol. 1968;20(10):749–53.

    Article  CAS  PubMed  Google Scholar 

  287. Hsueh W, Needleman P. Sites of lipase activation and prostaglandin synthesis in isolated, perfused rabbit hearts and hydronephrotic kidneys. Prostaglandins. 1978;16:661–8.

    Article  CAS  Google Scholar 

  288. Bolton HS, Chanderbhan R, Bryant RW, Bailey JM, Weglicki WB, Vahouny GV. Prostaglandin synthesis by adult heart myocytes. J Mol Cell Cardiol. 1980;12(11):1287–98.

    Article  CAS  PubMed  Google Scholar 

  289. Karmazyn M, Dhalla NS. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol. 1983;61(11):1207–25.

    Article  CAS  PubMed  Google Scholar 

  290. Au TL, Collins GA, Harvie CJ, Walker MJ. The actions of prostaglandins I2 and E2 on arrhythmias produced by coronary occlusion in the rat and dog. Prostaglandins. 1979;18(5):707–20.

    Article  CAS  PubMed  Google Scholar 

  291. Coker SJ, Parratt JR. AH23848, a thromboxane antagonist, suppresses ischaemia and reperfusion-induced arrhythmias in anaesthetized greyhounds. Br J Pharmacol. 1985;86(1):259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Parratt JR, Wainwright CL. Ventricular arrhythmias induced by local injections of vasoconstrictors following coronary occlusion (abstract). Br J Pharmacol. 1986;88:397.

    Article  Google Scholar 

  293. Coker SJ. Further evidence that thromboxane exacerbates arrhythmias: effects of UK38485 during coronary artery occlusion and reperfusion in anaesthetized greyhounds. J Mol Cell Cardiol. 1984;16(7):633–41.

    Article  CAS  PubMed  Google Scholar 

  294. De Clerck F, Beetens J, Van de Water A, Vercammen E, Janssen PA. R 68 070: thromboxane A2 synthetase inhibition and thromboxane A2/prostaglandin endoperoxide receptor blockade combined in one molecule – II. Pharmacological effects in vivo and ex vivo. Thromb Haemost. 1989;61(1):43–9.

    PubMed  Google Scholar 

  295. O’Connor KM, Friehling TD, Kowey PR. The effect of thromboxane inhibition on vulnerability to ventricular fibrillation in the acute and chronic feline infarction models. Am Heart J. 1989;117(4):848–53.

    Article  PubMed  Google Scholar 

  296. Coker SJ, Parratt JR. Relationships between the severity of myocardial ischaemia, reperfusion-induced ventricular fibrillation, and the late administration of dazmegrel or nifedipine. J Cardiovasc Pharmacol. 1985;7(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  297. O’Connor KM, Friehling TD, Kelliher GJ, MacNab MW, Wetstein L, Kowey PR. Effect of thromboxane synthetase inhibition on vulnerability to ventricular arrhythmia following coronary occlusion. Am Heart J. 1986;111(4):683–8.

    Article  PubMed  Google Scholar 

  298. Parratt JR, Wainwright CL. The effects of the thromboxane antagonist BM13,177 on ischaemia and reperfusion induced arrhythmias in dogs. Br J Pharmacol. 1986;88:219.

    Google Scholar 

  299. Ezeamuzie IC, Assem ES. Effects of leukotrienes C4 and D4 on guinea-pig heart and the participation of SRS-A in the manifestations of guinea-pig cardiac anaphylaxis. Agents Actions. 1983;13(2–3):182–7.

    Article  CAS  PubMed  Google Scholar 

  300. Letts LG, Piper PJ. The actions of leukotrienes C4 and D4 on guinea-pig isolated hearts. Br J Pharmacol. 1982;76(1):169–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Terashita ZI, Fukui M, Hirata M, Terao S, Ohkawa S, Nishikawa K, et al. Coronary vasoconstriction and PGI2 release by leukotrienes in isolated guinea pig hearts. Eur J Pharmacol. 1981;73(4):357–61.

    Article  CAS  Google Scholar 

  302. Beatch GN, Courtice ID, Salari H. A comparative study of the antiarrhythmic properties of eicosanoid inhibitors, free radical scavengers and potassium channel blockers on reperfusion induced arrhythmias in the rat. Proc West Pharmacol Soc. 1989;32:285–9.

    CAS  PubMed  Google Scholar 

  303. Hahn RA, MacDonald BR, Simpson PJ, Potts BD, Parli CJ. Antagonism of leukotriene B4 receptors does not limit canine myocardial infarct size. J Pharmacol Exp Ther. 1990;253(1):58–66.

    CAS  PubMed  Google Scholar 

  304. Ito T, Toki Y, Hieda N, Okumura K, Hashimoto H, Ogawa K, et al. Protective effects of a thromboxane synthetase inhibitor, a thromboxane antagonist, a lipoxygenase inhibitor and a leukotriene C4, D4 antagonist on myocardial injury caused by acute myocardial infarction in the canine heart. Jpn Circ J. 1989;53(9):1115–21.

    Article  CAS  PubMed  Google Scholar 

  305. Lad N, Manning AS. Reperfusion arrhythmias in the anaesthetized rat: beneficial action of cilazapril (abstract). Br J Pharmacol. 1987;91:390.

    Google Scholar 

  306. Ribuot C, Rochette L. Converting enzyme inhibitors (captopril, enalapril, perindopril) prevent early-post infarction ventricular fibrillation in the anaesthetized rat. Cardiovasc Drugs Ther. 1987;1(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  307. Rochette L, Ribuot C, Belichard P, Bril A, Devissaguet M. Protective effect of angiotensin converting enzyme inhibitors (CEI): captopril and perindopril on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion in rat. Clin Exp Hypertens A. 1987;9(2–3):365–8.

    CAS  PubMed  Google Scholar 

  308. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, et al. TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res. 2009;105(10):1023–30. Epub 2009 Sep 1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, et al. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A. 2009;106(13):5400–5. Epub 2009 Mar 5416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–5.

    Article  CAS  PubMed  Google Scholar 

  311. Ezra D, Goldstein RE, Czaja JF, Feuerstein GZ. Lethal ischemia due to intracoronary endothelin in pigs. Am J Physiol. 1989;257(1 Pt 2):H339–43.

    CAS  PubMed  Google Scholar 

  312. Salvati P, Chierchia S, Dho L, Ferrario RG, Parenti P, Vicedomini G, et al. Proarrhythmic activity of intracoronary endothelin in dogs: relation to the site of administration and to changes in regional flow. J Cardiovasc Pharmacol. 1991;17(6):1007–14.

    Article  CAS  PubMed  Google Scholar 

  313. Fagbemi O, Leprán I, Parratt JR, Szekeres L. Naloxone inhibits early arrhythmias resulting from acute coronary ligation. Br J Pharmacol. 1982;76(4):504–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Tai KK, Jin WQ, Chan TK, Wong TM. Characterization of [3H]U69593 binding sites in the rat heart by receptor binding assays. J Mol Cell Cardiol. 1991;23(11):1297–302.

    Article  CAS  PubMed  Google Scholar 

  315. Pugsley MK, Penz WP, Walker MJ, Wong TM. Cardiovascular actions of the kappa-agonist, U-50,488H, in the absence and presence of opioid receptor blockade. Br J Pharmacol. 1992;105(3):521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Sitsapesan R, Parratt JR. The effects of drugs interacting with opioid receptors on the early ventricular arrhythmias arising from myocardial ischaemia. Br J Pharmacol. 1989;97(3):795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Fagbemi O, Kane KA, Leprán I, Parratt JR, Szekeres L. Antiarrhythmic actions of meptazinol, a partial agonist at opiate receptors, in acute myocardial ischaemia. Br J Pharmacol. 1983;78(3):455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Boachie-Ansah G, Sitsapesan R, Kane KA, Parratt JR. The antiarrhythmic and cardiac electrophysiological effects of buprenorphine. Br J Pharmacol. 1989;97(3):801–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Sarne Y, Flitstein A, Oppenheimer E. Anti-arrhythmic activities of opioid agonists and antagonists and their stereoisomers. Br J Pharmacol. 1991;102(3):696–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Wong TM, Lee AY, Tai KK. Effects of drugs interacting with opioid receptors during normal perfusion or ischemia and reperfusion in the isolated rat heart – an attempt to identify cardiac opioid receptor subtype(s) involved in arrhythmogenesis. J Mol Cell Cardiol. 1990;22(10):1167–75.

    Article  CAS  PubMed  Google Scholar 

  321. Lee AY, Chen YT, Kan MN, P’Eng FK, Chai CY, Kuo JS. Consequences of opiate agonist and antagonist in myocardial ischaemia suggest a role of endogenous opioid peptides in ischaemic heart disease. Cardiovasc Res. 1992;26(4):392–5.

    Article  CAS  PubMed  Google Scholar 

  322. Buxton BF, Komeda M, Fuller JA, Gordon I. Bilateral internal thoracic artery grafting may improve outcome of coronary artery surgery. Risk-adjusted survival. Circulation. 1998;98(19 Suppl):II1–6.

    CAS  PubMed  Google Scholar 

  323. Lytle BW, Blackstone EH, Loop FD, Houghtaling PL, Arnold JH, Akhrass R, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg. 1999;117(5):855–72.

    Article  CAS  PubMed  Google Scholar 

  324. Pevni D, Mohr R, Lev-Ran O, Paz Y, Kramer A, Frolkis I, et al. Technical aspects of composite arterial grafting with double skeletonized internal thoracic arteries. Chest. 2003;123(5):1348–54.

    Article  PubMed  Google Scholar 

  325. Pick AW, Orszulak TA, Anderson BJ, Schaff HV. Single versus bilateral internal mammary artery grafts: 10-year outcome analysis. Ann Thorac Surg. 1997;64(3):599–605.

    Article  CAS  PubMed  Google Scholar 

  326. Sur S, Sugimoto JT, Agrawal DK. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can J Physiol Pharmacol. 2014;92(7):531–45.

    Article  CAS  PubMed  Google Scholar 

  327. Hata JA, Petrofski JA, Schroder JN, Williams ML, Timberlake SH, Pippen A, et al. Modulation of phosphatidylinositol 3-kinase signaling reduces intimal hyperplasia in aortocoronary saphenous vein grafts. J Thorac Cardiovasc Surg. 2005;129(6):1405–13.

    Article  CAS  PubMed  Google Scholar 

  328. Wallitt EJ, Jevon M, Hornick PI. Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann Thorac Surg. 2007;84(1):317–23.

    Article  PubMed  Google Scholar 

  329. He GW, Rosenfeldt FL, Angus JA. Pharmacological relaxation of the saphenous vein during harvesting for coronary artery bypass grafting. Ann Thorac Surg. 1993;55(5):1210–7.

    Article  CAS  PubMed  Google Scholar 

  330. Rosenfeldt FL, He GW, Buxton BF, Angus JA. Pharmacology of coronary artery bypass grafts. Ann Thorac Surg. 1999;67(3):878–88.

    Article  CAS  PubMed  Google Scholar 

  331. Hoch JR, Stark VK, van Rooijen N, Kim JL, Nutt MP, Warner TF. Macrophage depletion alters vein graft intimal hyperplasia. Surgery. 1999;126(2):428–37.

    Article  CAS  PubMed  Google Scholar 

  332. Hu X, Zhang Q, Sun D, Duan P, Wang X, Duan Z. [The gene expression of nuclear transcriptional factor-kappa B and I kappa B in autogenous vein graft in rats]. Zhonghua Yi Xue Za Zhi. 2002;82(22):1546–9.

    CAS  PubMed  Google Scholar 

  333. Wolff RA, Ryomoto M, Stark VE, Malinowski R, Tomas JJ, Stinauer MA, et al. Antisense to transforming growth factor-beta1 messenger RNA reduces vein graft intimal hyperplasia and monocyte chemotactic protein 1. J Vasc Surg. 2005;41(3):498–508.

    Article  PubMed  Google Scholar 

  334. Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y, et al. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol. 2006;41(3):431–40.

    Article  CAS  PubMed  Google Scholar 

  335. Ohtani K, Usui M, Nakano K, Kohjimoto Y, Kitajima S, Hirouchi Y, et al. Antimonocyte chemoattractant protein-1 gene therapy reduces experimental in-stent restenosis in hypercholesterolemic rabbits and monkeys. Gene Ther. 2004;11(16):1273–82.

    Article  CAS  PubMed  Google Scholar 

  336. Nakao A, Otterbein LE, Overhaus M, Sarady JK, Tsung A, Kimizuka K, et al. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology. 2004;127(2):595–606.

    Article  CAS  PubMed  Google Scholar 

  337. Pintucci G, Saunders PC, Gulkarov I, Sharony R, Kadian-Dodov DL, Bohmann K, et al. Anti-proliferative and anti-inflammatory effects of topical mapk inhibition in arterialized vein grafts. FASEB J. 2006;20(2):398–400.

    CAS  PubMed  Google Scholar 

  338. Ruef J, Meshel AS, Hu Z, Horaist C, Ballinger CA, Thompson LJ, et al. Flavopiridol inhibits smooth muscle cell proliferation in vitro and neointimal formation in vivo after carotid injury in the rat. Circulation. 1999;100(6):659–65.

    Article  CAS  PubMed  Google Scholar 

  339. Petrofski JA, Hata JA, Williams ML, Parsa CJ, Thompson RB, Hanish SI, et al. A Gbetagamma inhibitor reduces intimal hyperplasia in aortocoronary saphenous vein grafts. J Thorac Cardiovasc Surg. 2005;130(6):1683–90.

    Article  CAS  PubMed  Google Scholar 

  340. Sun S, Beitler JJ, Ohki T, Calderon TM, Schechner R, Yaparpalvi R, et al. Inhibitory effect of brachytherapy on intimal hyperplasia in arteriovenous fistula. J Surg Res. 2003;115(2):200–8.

    Article  PubMed  Google Scholar 

  341. Corpataux JM, Naik J, Porter KE, London NJ. A comparison of six statins on the development of intimal hyperplasia in a human vein culture model. Eur J Vasc Endovasc Surg. 2005;29(2):177–81.

    Article  PubMed  Google Scholar 

  342. Chu WW, Rha SW, Kuchulakanti PK, Cheneau E, Torguson R, Pinnow E, et al. Efficacy of sirolimus-eluting stents compared with bare metal stents for saphenous vein graft intervention. Am J Cardiol. 2006;97(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  343. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8(11):1249–56.

    Article  CAS  PubMed  Google Scholar 

  344. Mann MJ, Whittemore AD, Donaldson MC, Belkin M, Conte MS, Polak JF, et al. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet. 1999;354(9189):1493–8.

    Article  CAS  PubMed  Google Scholar 

  345. Lopes RD, Williams JB, Mehta RH, Reyes EM, Hafley GE, Allen KB, et al. Edifoligide and long-term outcomes after coronary artery bypass grafting: PRoject of Ex-vivo Vein graft ENgineering via Transfection IV (PREVENT IV) 5-year results. Am Heart J. 2012;164(3):379–86.e371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Del Campo C. Pedicled or skeletonized? A review of the internal thoracic artery graft. Tex Heart Inst J. 2003;30(3):170–5.

    PubMed  PubMed Central  Google Scholar 

  347. Raja SG, Dreyfus GD. Internal thoracic artery: to skeletonize or not to skeletonize? Ann Thorac Surg. 2005;79(5):1805–11.

    Article  PubMed  Google Scholar 

  348. Kandemir O, Buyukates M, Gun BD, Turan SA, Tokmakoglu H. Intraoperative and histochemical comparison of the skeletonized and pedicled internal thoracic artery. Heart Surg Forum. 2007;10(2):E158–61.

    Article  PubMed  Google Scholar 

  349. Choi JB, Lee SY. Skeletonized and pedicled internal thoracic artery grafts: effect on free flow during bypass. Ann Thorac Surg. 1996;61(3):909–13.

    Article  CAS  PubMed  Google Scholar 

  350. Wendler O, Tscholl D, Huang Q, Schafers HJ. Free flow capacity of skeletonized versus pedicled internal thoracic artery grafts in coronary artery bypass grafts. Eur J Cardiothorac Surg. 1999;15(3):247–50.

    Article  CAS  PubMed  Google Scholar 

  351. Peterson MD, Borger MA, Rao V, Peniston CM, Feindel CM. Skeletonization of bilateral internal thoracic artery grafts lowers the risk of sternal infection in patients with diabetes. J Thorac Cardiovasc Surg. 2003;126(5):1314–9.

    Article  PubMed  Google Scholar 

  352. Ali E, Saso S, Ashrafian H, Athanasiou T. Does a skeletonized or pedicled left internal thoracic artery give the best graft patency? Interact Cardiovasc Thorac Surg. 2010;10(1):97–104.

    Article  PubMed  Google Scholar 

  353. Sá MP, Ferraz PE, Escobar RR, Nunes EO, Lustosa P, Vasconcelos FP, et al. Patency of skeletonized versus pedicled internal thoracic artery in coronary bypass graft surgery: a systematic review, meta-analysis and meta-regression. Int J Surg. 2014;12(7):666–72.

    Article  PubMed  Google Scholar 

  354. Shukla N, Jeremy JY. Pathophysiology of saphenous vein graft failure: a brief overview of interventions. Curr Opin Pharmacol. 2012;12(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  355. Jeremy JY, Yim AP, Wan S, Angelini GD. Oxidative stress, nitric oxide, and vascular disease. J Card Surg. 2002;17(4):324–7.

    Article  PubMed  Google Scholar 

  356. Shukla N, Angelini GD, Ascione R, Talpahewa S, Capoun R, Jeremy JY. Nitric oxide donating aspirins: novel drugs for the treatment of saphenous vein graft failure. Ann Thorac Surg. 2003;75(5):1437–42.

    Article  PubMed  Google Scholar 

  357. Sparatore A, Perrino E, Tazzari V, Giustarini D, Rossi R, Rossoni G, et al. Pharmacological profile of a novel H(2)S-releasing aspirin. Free Radic Biol Med. 2009;46(5):586–92.

    Article  CAS  PubMed  Google Scholar 

  358. Wan S, Shukla N, Angelini GD, Yim AP, Johnson JL, Jeremy JY. Nitric oxide-donating aspirin (NCX 4016) inhibits neointimal thickening in a pig model of saphenous vein-carotid artery interposition grafting: a comparison with aspirin and morpholinosydnonimine (SIN-1). J Thorac Cardiovasc Surg. 2007;134(4):1033–9.

    Article  CAS  PubMed  Google Scholar 

  359. Fulton GJ, Davies MG, Barber L, Svendsen E, Hagen PO. Localized versus systemic angiotensin II receptor inhibition of intimal hyperplasia in experimental vein grafts by the specific angiotensin II receptor inhibitor L158,809. Surgery. 1998;123(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  360. Wan S, Yim AP, Johnson JL, Shukla N, Angelini GD, Smith FC, et al. The endothelin 1A receptor antagonist BSF 302146 is a potent inhibitor of neointimal and medial thickening in porcine saphenous vein-carotid artery interposition grafts. J Thorac Cardiovasc Surg. 2004;127(5):1317–22.

    Article  CAS  PubMed  Google Scholar 

  361. Porter KE, Loftus IM, Peterson M, Bell PR, London NJ, Thompson MM. Marimastat inhibits neointimal thickening in a model of human vein graft stenosis. Br J Surg. 1998;85(10):1373–7.

    Article  CAS  PubMed  Google Scholar 

  362. Jeremy JY, George SJ, Wyatt MG, Shukla N, Bloor J, Newby AC, et al. Toward the prevention of vein graft failure. In: Handler C, Abraham C, Coghlan G, Dashwood MR, editors. Vascular complications in human disease: mechanisms and complications. Amsterdam: Elsevier; 2007. p. 345–68.

    Google Scholar 

  363. Muzaffar S, Shukla N, Jeremy JY. Nicotinamide adenine dinucleotide phosphate oxidase: a promiscuous therapeutic target for cardiovascular drugs? Trends Cardiovasc Med. 2005;15(8):278–82.

    Article  CAS  PubMed  Google Scholar 

  364. Wan S, Yim AP, Angelini GD, Jeremy JY. Novel strategies for the prevention of vein graft failure. In: Guo-Wei H, editor. Arterial grafting for coronary artery bypass surgery: a textbook for cardiovascular clinicians and researchers. Amsterdam: Elsevier; 2007. p. 303–9.

    Google Scholar 

  365. Schoeffter P, Dion R, Godfraind T. Modulatory role of the vascular endothelium in the contractility of human isolated internal mammary artery. Br J Pharmacol. 1988;95(2):531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Gojkovic-Bukarica LC, Beleslin-Cokic BB, Novakovic AN, Peric MS, Markovic-Lipkovski JZ, Cirovic SZ, et al. The effects of potassium channel opener P1075 on the human saphenous vein and human internal mammary artery. J Cardiovasc Pharmacol. 2011;57(6):648–55.

    Article  CAS  PubMed  Google Scholar 

  367. Novakovic A, Pavlovic M, Stojanovic I, Milojevic P, Babic M, Ristic S, et al. Different K+ channels are involved in relaxation of arterial and venous graft induced by nicorandil. J Cardiovasc Pharmacol. 2011;58(6):602–8.

    Article  CAS  PubMed  Google Scholar 

  368. Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J Mol Cell Cardiol. 2011;50(5):742–50. Epub 2010 Jun 2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182–6.

    Article  CAS  PubMed  Google Scholar 

  370. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984;223(4642):1296–9.

    Article  CAS  PubMed  Google Scholar 

  371. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992;257(5075):1401–3.

    Article  CAS  PubMed  Google Scholar 

  372. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg. 1992;16(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  373. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994;93(2):662–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 1996;94(12):3281–90.

    Article  CAS  PubMed  Google Scholar 

  375. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–4.

    Article  CAS  PubMed  Google Scholar 

  376. Laitinen M, Makinen K, Manninen H, Matsi P, Kossila M, Agrawal RS, et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther. 1998;9(10):1481–6.

    Article  CAS  PubMed  Google Scholar 

  377. Schumacher B, Pecher P, von Specht BU, Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97(7):645–50.

    Article  CAS  PubMed  Google Scholar 

  378. Isner JM, Vale PR, Symes JF, Losordo DW. Assessment of risks associated with cardiovascular gene therapy in human subjects. Circ Res. 2001;89(5):389–400.

    Article  CAS  PubMed  Google Scholar 

  379. Ferrara N. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 1999;237:1–30.

    CAS  PubMed  Google Scholar 

  380. Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80(2):188–94. Epub 2010 Apr 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res. 2000;86(2):E29–35.

    Article  CAS  PubMed  Google Scholar 

  382. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn. 1995;204(3):228–39.

    Article  CAS  PubMed  Google Scholar 

  383. Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci U S A. 1998;95(20):11709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.

    Article  CAS  PubMed  Google Scholar 

  385. Rissanen TT, Ylä-Herttuala S. Current status of cardiovascular gene therapy. Mol Ther. 2007;15(7):1233–47. Epub 2007 May 1238.

    Article  CAS  PubMed  Google Scholar 

  386. Hao X, Månsson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Brodin LA, et al. Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model. Cardiovasc Res. 2007;73(3):481–7. Epub 2006 Oct 2020.

    Article  CAS  PubMed  Google Scholar 

  387. Ruixing Y, Jiaquan L, Jie C, Dezhai Y. Intravenous administration of vascular endothelial growth factor improves cardiac performance and inhibits cardiomyocyte apoptosis. Growth Factors. 2006;24(3):209–17.

    Article  PubMed  CAS  Google Scholar 

  388. Bull DA, Bailey SH, Rentz JJ, Zebrack JS, Lee M, Litwin SE, et al. Effect of terplex/VEGF-165 gene therapy on left ventricular function and structure following myocardial infarction. VEGF gene therapy for myocardial infarction. J Control Release. 2003;93(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  389. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation. 1998;98(25):2800–4.

    Article  CAS  PubMed  Google Scholar 

  390. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7(4):425–9.

    Article  CAS  PubMed  Google Scholar 

  391. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000;102(8):898–901.

    Article  CAS  PubMed  Google Scholar 

  392. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat – angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35(5):1323–30.

    Article  CAS  PubMed  Google Scholar 

  393. Lee M, Rentz J, Bikram M, Han S, Bull DA, Kim SW. Hypoxia-inducible VEGF gene delivery to ischemic myocardium using water-soluble lipopolymer. Gene Ther. 2003;10(18):1535–42.

    Article  CAS  PubMed  Google Scholar 

  394. Su H, Arakawa-Hoyt J, Kan YW. Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci U S A. 2002;99(14):9480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Yockman JW, Choi D, Whitten MG, Chang CW, Kastenmeier A, Erickson H, et al. Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct. Gene Ther. 2009;16(1):127–35. Epub 2008 Sep 2011.

    Article  CAS  PubMed  Google Scholar 

  396. Dong H, Wang Q, Zhang Y, Jiang B, Xu X, Zhang Z. Angiogenesis induced by hVEGF165 gene controlled by hypoxic response elements in rabbit ischemia myocardium. Exp Biol Med (Maywood). 2009;234(12):1417–24.

    Article  CAS  Google Scholar 

  397. Morishita R, Aoki M, Yo Y, Ogihara T. Hepatocyte growth factor as cardiovascular hormone: role of HGF in the pathogenesis of cardiovascular disease. Endocr J. 2002;49(3):273–84.

    Article  CAS  PubMed  Google Scholar 

  398. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther. 2000;7(5):417–27.

    Article  CAS  PubMed  Google Scholar 

  399. Funatsu T, Sawa Y, Ohtake S, Takahashi T, Matsumiya G, Matsuura N, et al. Therapeutic angiogenesis in the ischemic canine heart induced by myocardial injection of naked complementary DNA plasmid encoding hepatocyte growth factor. J Thorac Cardiovasc Surg. 2002;124(6):1099–105.

    Article  CAS  PubMed  Google Scholar 

  400. Wang W, Yang ZJ, Ma DC, Wang LS, Xu SL, Zhang YR, et al. Induction of collateral artery growth and improvement of post-infarct heart function by hepatocyte growth factor gene transfer. Acta Pharmacol Sin. 2006;27(5):555–60.

    Article  CAS  PubMed  Google Scholar 

  401. Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Chatterjee S, Berry MF, et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation. 2003;108 Suppl 1:II230–6.

    PubMed  Google Scholar 

  402. Jin H, Wyss JM, Yang R, Schwall R. The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr Pharm Des. 2004;10(20):2525–33.

    Article  CAS  PubMed  Google Scholar 

  403. Yang ZJ, Chen B, Sheng Z, Zhang DG, Jia EZ, Wang W, et al. Improvement of heart function in postinfarct heart failure swine models after hepatocyte growth factor gene transfer: comparison of low-, medium- and high-dose groups. Mol Biol Rep. 2009;37(4):2075–81.

    Article  PubMed  CAS  Google Scholar 

  404. Yang Z, Wang W, Ma D, Zhang Y, Wang L, Zhang Y, et al. Recruitment of stem cells by hepatocyte growth factor via intracoronary gene transfection in the postinfarction heart failure. Sci China C Life Sci. 2007;50(6):748–52.

    Article  PubMed  Google Scholar 

  405. Ahmet I, Sawa Y, Yamaguchi T, Matsuda H. Gene transfer of hepatocyte growth factor improves angiogenesis and function of chronic ischemic myocardium in canine heart. Ann Thorac Surg. 2003;75(4):1283–7.

    Article  PubMed  Google Scholar 

  406. Cho KR, Choi JS, Hahn W, Kim DS, Park JS, Lee DS, et al. Therapeutic angiogenesis using naked DNA expressing two isoforms of the hepatocyte growth factor in a porcine acute myocardial infarction model. Eur J Cardiothorac Surg. 2008;34(4):857–63. Epub 2008 Jul 2011.

    Article  PubMed  Google Scholar 

  407. Ahmet I, Sawa Y, Iwata K, Matsuda H. Gene transfection of hepatocyte growth factor attenuates cardiac remodeling in the canine heart: a novel gene therapy for cardiomyopathy. J Thorac Cardiovasc Surg. 2002;124(5):957–63.

    Article  CAS  PubMed  Google Scholar 

  408. Taniyama Y, Morishita R, Aoki M, Hiraoka K, Yamasaki K, Hashiya N, et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension. 2002;40(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  409. Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol. 2004;44(3):644–53.

    Article  CAS  PubMed  Google Scholar 

  410. Khurana R, Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med. 2003;13(3):116–22.

    Article  CAS  PubMed  Google Scholar 

  411. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol. 2001;2((3):REVIEWS3005. Epub 2001 Mar 3009.

    Google Scholar 

  412. Heilmann C, von Samson P, Schlegel K, Attmann T, von Specht BU, Beyersdorf F, et al. Comparison of protein with DNA therapy for chronic myocardial ischemia using fibroblast growth factor-2. Eur J Cardiothorac Surg. 2002;22(6):957–64.

    Article  PubMed  Google Scholar 

  413. Horvath KA, Doukas J, Lu CY, Belkind N, Greene R, Pierce GF, et al. Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann Thorac Surg. 2002;74(2):481–6; discussion 487.

    Article  PubMed  Google Scholar 

  414. Post MJ, Sato K, Murakami M, Bao J, Tirziu D, Pearlman JD, et al. Adenoviral PR39 improves blood flow and myocardial function in a pig model of chronic myocardial ischemia by enhancing collateral formation. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R494–500. Epub 2005 Oct 2027.

    Article  CAS  PubMed  Google Scholar 

  415. Gao MH, Lai NC, McKirnan MD, Roth DA, Rubanyi GM, Dalton N, et al. Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: report of preclinical data. Hum Gene Ther. 2004;15(6):574–87.

    Article  CAS  PubMed  Google Scholar 

  416. Suzuki G, Lee TC, Fallavollita JA, Canty Jr JM. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res. 2005;96(7):767–75. Epub 2005 Mar 2010.

    Article  CAS  PubMed  Google Scholar 

  417. Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ Res. 2009;105(8):724–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105(17):2012–8.

    Article  CAS  PubMed  Google Scholar 

  419. Mäkinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E, et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther. 2002;6(1):127–33.

    Article  PubMed  CAS  Google Scholar 

  420. Rajagopalan S, Mohler 3rd ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–8. Epub 2003 Sep 1922.

    Article  CAS  PubMed  Google Scholar 

  421. Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677–83. Epub 2003 May 2612.

    Article  CAS  PubMed  Google Scholar 

  422. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the euroinject one trial. J Am Coll Cardiol. 2005;45(7):982–8.

    Article  CAS  PubMed  Google Scholar 

  423. Stewart DJ, Hilton JD, Arnold JM, Gregoire J, Rivard A, Archer SL, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13(21):1503–11. Epub 2006 Jun 1522.

    Article  CAS  PubMed  Google Scholar 

  424. Ripa RS, Wang Y, Jørgensen E, Johnsen HE, Hesse B, Kastrup J. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J. 2006;27(15):1785–92. Epub 2006 Jul 1786.

    Article  CAS  PubMed  Google Scholar 

  425. Kusumanto YH, van Weel V, Mulder NH, Smit AJ, van den Dungen JJ, Hooymans JM, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17(6):683–91.

    Article  CAS  PubMed  Google Scholar 

  426. Grines CL, Watkins MW, Helmer G, Penny W, Brinker J, Marmur JD, et al. Angiogenic gene therapy (agent) trial in patients with stable angina pectoris. Circulation. 2002;105(11):1291–7.

    Article  CAS  PubMed  Google Scholar 

  427. Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003;42(8):1339–47.

    Article  CAS  PubMed  Google Scholar 

  428. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16(5):972–8. Epub 2008 Apr 2001.

    Article  CAS  PubMed  Google Scholar 

  429. Rajagopalan S, Olin J, Deitcher S, Pieczek A, Laird J, Grossman PM, et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation. 2007;115(10):1234–43. Epub 2007 Feb 1219.

    CAS  PubMed  Google Scholar 

  430. Grossman PM, Mendelsohn F, Henry TD, Hermiller JB, Litt M, Saucedo JF, et al. Results from a phase II multicenter, double-blind placebo-controlled study of Del-1 (VLTS-589) for intermittent claudication in subjects with peripheral arterial disease. Am Heart J. 2007;153(5):874–80.

    Article  CAS  PubMed  Google Scholar 

  431. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118(1):58–65. Epub 2008 Jun 2016.

    Article  CAS  PubMed  Google Scholar 

  432. Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007;50(11):1038–46. Epub 2007 Aug 1024.

    Article  CAS  PubMed  Google Scholar 

  433. Gerritsen ME. HGF and VEGF: a dynamic duo. Circ Res. 2005;96(3):272–3.

    Article  CAS  PubMed  Google Scholar 

  434. Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O, et al. Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg. 1998;28(6):964–73; discussion 973–65.

    Article  CAS  PubMed  Google Scholar 

  435. Rajagopalan S, Shah M, Luciano A, Crystal R, Nabel EG. Adenovirus-mediated gene transfer of VEGF(121) improves lower-extremity endothelial function and flow reserve. Circulation. 2001;104(7):753–5.

    Article  CAS  PubMed  Google Scholar 

  436. Shyu KG, Chang H, Wang BW, Kuan P. Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med. 2003;114(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  437. Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med. 2000;6(4):460–3.

    Article  CAS  PubMed  Google Scholar 

  438. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286(5449):2511–4.

    Article  CAS  PubMed  Google Scholar 

  439. Blau HM, Banfi A. The well-tempered vessel. Nat Med. 2001;7(5):532–4.

    Article  CAS  PubMed  Google Scholar 

  440. Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med. 2000;132(11):880–4.

    Article  CAS  PubMed  Google Scholar 

  441. Anghel A, Mut-Vitcu B, Savu L, Marian C, Seclaman E, Iman R, et al. Clinical improvement after treatment with VEGF(165) in patients with severe chronic lower limb ischaemia. Genomic Med. 2007;1(1–2):47–55. Epub 2007 May 2025.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Agrawal RS, Muangman S, Layne MD, Melo L, Perrella MA, Lee RT, et al. Pre-emptive gene therapy using recombinant adeno-associated virus delivery of extracellular superoxide dismutase protects heart against ischemic reperfusion injury, improves ventricular function and prolongs survival. Gene Ther. 2004;11(12):962–9.

    Article  CAS  PubMed  Google Scholar 

  443. Li Q, Bolli R, Qiu Y, Tang XL, Guo Y, French BA. Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation. 2001;103(14):1893–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Li Q, Bolli R, Qiu Y, Tang XL, Murphree SS, French BA. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation. 1998;98(14):1438–48.

    Article  CAS  PubMed  Google Scholar 

  445. Yang J, Marden JJ, Fan C, Sanlioglu S, Weiss RM, Ritchie TC, et al. Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol Ther. 2003;7(3):341–53.

    Article  CAS  PubMed  Google Scholar 

  446. Abunasra HJ, Smolenski RT, Morrison K, Yap J, Sheppard MN, O’Brien T, et al. Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. Eur J Cardiothorac Surg. 2001;20(1):153–8.

    Article  CAS  PubMed  Google Scholar 

  447. Liu X, Simpson JA, Brunt KR, Ward CA, Hall SR, Kinobe RT, et al. Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 yr after acute myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;293(1):H48–59. Epub 2007 Feb 2023.

    Article  CAS  PubMed  Google Scholar 

  448. Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation. 2002;105(5):602–7.

    Article  CAS  PubMed  Google Scholar 

  449. Liu X, Pachori AS, Ward CA, Davis JP, Gnecchi M, Kong D, et al. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J. 2006;20(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  450. Samuel SM, Thirunavukkarasu M, Penumathsa SV, Koneru S, Zhan L, Maulik G, et al. Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation. 2010;121(10):1244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Kupatt C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandner T, et al. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J. 2003;17(6):705–7. Epub 2003 Feb 2005.

    CAS  PubMed  Google Scholar 

  452. Okubo S, Wildner O, Shah MR, Chelliah JC, Hess ML, Kukreja RC. Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation. 2001;103(6):877–81.

    Article  CAS  PubMed  Google Scholar 

  453. Zhu YH, Ma TM, Wang X. Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts. Acta Pharmacol Sin. 2005;26(10):1193–200.

    Article  CAS  PubMed  Google Scholar 

  454. Suzuki K, Murtuza B, Sammut IA, Latif N, Jayakumar J, Smolenski RT, et al. Heat shock protein 72 enhances manganese superoxide dismutase activity during myocardial ischemia-reperfusion injury, associated with mitochondrial protection and apoptosis reduction. Circulation. 2002;106(12 Suppl 1):I270–6.

    PubMed  Google Scholar 

  455. Tenhunen O, Soini Y, Ilves M, Rysä J, Tuukkanen J, Serpi R, et al. P38 kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and anti-apoptotic mechanisms. FASEB J. 2006;20(11):1907–9. Epub 2006 Jul 1918.

    Article  CAS  PubMed  Google Scholar 

  456. Berry MF, Pirolli TJ, Jayasankar V, Morine KJ, Moise MA, Fisher O, et al. Targeted overexpression of leukemia inhibitory factor to preserve myocardium in a rat model of postinfarction heart failure. J Thorac Cardiovasc Surg. 2004;128(6):866–75.

    Article  CAS  PubMed  Google Scholar 

  457. Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M. Sonic hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/Netrin-1/PKC pathway. PLoS. 2010;5(1):e8576.

    Article  CAS  Google Scholar 

  458. Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med. 2005;11(11):1197–204. Epub 2005 Oct 1123.

    Article  CAS  PubMed  Google Scholar 

  459. Agata J, Chao L, Chao J. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension. 2002;40(5):653–9.

    Article  CAS  PubMed  Google Scholar 

  460. Zuo H, Liu Z, Liu X, Yang J, Liu T, Wen S, et al. CD151 gene delivery after myocardial infarction promotes functional neovascularization and activates FAK signaling. Mol Med. 2009;15(9–10):307–15. Epub 2009 Jun 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  461. Wang L, Yang J, Liu ZX, Chen B, Liu J, Lan RF, et al. [Gene transfer of CD151 enhanced myocardial angiogenesis and improved cardiac function in rats with experimental myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi. 2006;34(2):159–63.

    CAS  PubMed  Google Scholar 

  462. Cittadini A, Monti MG, Iaccarino G, Di Rella F, Tsichlis PN, Di Gianni A, et al. Adenoviral gene transfer of Akt enhances myocardial contractility and intracellular calcium handling. Gene Ther. 2006;13(1):8–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Chatterjee S, Stewart AS, Bish LT, Jayasankar V, Kim EM, Pirolli T, et al. Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation. 2002;106(12 Suppl 1):I212–7.

    PubMed  Google Scholar 

  464. Chatterjee S, Bish LT, Jayasankar V, Stewart AS, Woo YJ, Crow MT, et al. Blocking the development of postischemic cardiomyopathy with viral gene transfer of the apoptosis repressor with caspase recruitment domain. J Thorac Cardiovasc Surg. 2003;125(6):1461–9.

    Article  CAS  PubMed  Google Scholar 

  465. Ruixing Y, Jinzhen W, Dezhai Y, Jiaquan L. Cardioprotective role of cardiotrophin-1 gene transfer in a murine model of myocardial infarction. Growth Factors. 2007;25(4):286–94.

    Article  PubMed  CAS  Google Scholar 

  466. Duan HF, Wang H, Yi J, Liu HJ, Zhang QW, Li LB, et al. Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Hum Gene Ther. 2007;18(11):1119–28.

    Article  CAS  PubMed  Google Scholar 

  467. Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther. 2014;14(2):183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Lipinski MJ, Biondi-Zoccai GG, Abbate A, Khianey R, Sheiban I, Bartunek J, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50(18):1761–7. Epub 2007 Oct 1715.

    Article  PubMed  Google Scholar 

  469. Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation. 2003;108(17):2070–3. Epub 2003 Oct 2020.

    Article  PubMed  Google Scholar 

  470. Boyle AJ, Whitbourn R, Schlicht S, Krum H, Kocher A, Nandurkar H, et al. Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol. 2006;109(1):21–7. Epub 2005 Jun 2020.

    Article  PubMed  Google Scholar 

  471. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430–6.

    Article  CAS  PubMed  Google Scholar 

  472. Atkins BZ, Hueman MT, Meuchel J, Hutcheson KA, Glower DD, Taylor DA. Cellular cardiomyoplasty improves diastolic properties of injured heart. J Surg Res. 1999;85(2):234–42.

    Article  CAS  PubMed  Google Scholar 

  473. Hattan N, Warltier D, Gu W, Kolz C, Chilian WM, Weihrauch D. Autologous vascular smooth muscle cell-based myocardial gene therapy to induce coronary collateral growth. Am J Physiol Heart Circ Physiol. 2004;287(2):H488–93.

    Article  CAS  PubMed  Google Scholar 

  474. Ninomiya M, Koyama H, Miyata T, Hamada H, Miyatake S, Shigematsu H, et al. Ex vivo gene transfer of basic fibroblast growth factor improves cardiac function and blood flow in a swine chronic myocardial ischemia model. Gene Ther. 2003;10(14):1152–60.

    Article  CAS  PubMed  Google Scholar 

  475. Haider H, Ye L, Jiang S, Ge R, Law PK, Chua T, et al. Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. J Mol Med (Berl). 2004;82(8):539–49. Epub 2004 Jun 2003.

    Article  CAS  Google Scholar 

  476. Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation. 2001;104(12 Suppl 1):I207–12.

    CAS  PubMed  Google Scholar 

  477. Ye L, Haider H, Tan R, Toh W, Law PK, Tan W, et al. Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation. 2007;116(11 Suppl):I113–20.

    CAS  PubMed  Google Scholar 

  478. Askari A, Unzek S, Goldman CK, Ellis SG, Thomas JD, DiCorleto PE, et al. Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol. 2004;43(10):1908–14.

    Article  CAS  PubMed  Google Scholar 

  479. Yau TM, Kim C, Ng D, Li G, Zhang Y, Weisel RD, et al. Increasing transplanted cell survival with cell-based angiogenic gene therapy. Ann Thorac Surg. 2005;80(5):1779–86.

    Article  PubMed  Google Scholar 

  480. Ye L, Haider H, Jiang S, Tan RS, Toh WC, Ge R, et al. Angiopoietin-1 for myocardial angiogenesis: a comparison between delivery strategies. Eur J Heart Fail. 2007;9(5):458–65. Epub 2006 Dec 2022.

    Article  CAS  PubMed  Google Scholar 

  481. Elmadbouh I, Haider H, Jiang S, Idris NM, Lu G, Ashraf M. Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol. 2007;42(4):792–803. Epub 2007 Feb 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Azarnoush K, Maurel A, Sebbah L, Carrion C, Bissery A, Mandet C, et al. Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. J Thorac Cardiovasc Surg. 2005;130(1):173–9.

    Article  CAS  PubMed  Google Scholar 

  483. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  484. Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2005;25(6):1168–73. Epub 2005 Apr 1114.

    Article  CAS  PubMed  Google Scholar 

  485. Chen SY, Wang F, Yan XY, Zhou Q, Ling Q, Ling JX, et al. Autologous transplantation of epcs encoding fgf1 gene promotes neovascularization in a porcine model of chronic myocardial ischemia. Int J Cardiol. 2009;135(2):223–32. Epub 2009 Jan 2031.

    Article  PubMed  Google Scholar 

  486. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation. 2002;105(21):2556–61.

    Article  CAS  PubMed  Google Scholar 

  487. Lim SY, Kim YS, Ahn Y, Jeong MH, Hong MH, Joo SY, et al. The effects of mesenchymal stem cells transduced with akt in a porcine myocardial infarction model. Cardiovasc Res. 2006;70(3):530–42. Epub 2006 Mar 2006.

    Article  CAS  PubMed  Google Scholar 

  488. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8.

    Article  CAS  PubMed  Google Scholar 

  489. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–201. Epub 2003 Aug 1110.

    Article  CAS  PubMed  Google Scholar 

  490. Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, et al. Bcl-2 engineered mscs inhibited apoptosis and improved heart function. Stem Cells. 2007;25(8):2118–27. Epub 2007 May 2113.

    Article  CAS  PubMed  Google Scholar 

  491. Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells. 2009;27(12):3021–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  492. Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005;46(7):1339–50.

    Article  CAS  PubMed  Google Scholar 

  493. Liu XH, Bai CG, Xu ZY, Huang SD, Yuan Y, Gong DJ, et al. Therapeutic potential of angiogenin modified mesenchymal stem cells: angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvasc Res. 2008;76(1):23–30. Epub 2008 Mar 2018.

    Article  CAS  PubMed  Google Scholar 

  494. Jiang S, Haider H, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res. 2006;99(7):776–84. Epub 2006 Sep 2007.

    Article  CAS  PubMed  Google Scholar 

  495. Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK. Maximizing ventricular function with multimodal cell-based gene therapy. Circulation. 2005;112(9 Suppl):I123–8.

    PubMed  Google Scholar 

  496. Yau TM, Kim C, Li G, Zhang Y, Fazel S, Spiegelstein D, et al. Enhanced angiogenesis with multimodal cell-based gene therapy. Ann Thorac Surg. 2007;83(3):1110–9.

    Article  PubMed  Google Scholar 

  497. Das H, George JC, Joseph M, Das M, Abdulhameed N, Blitz A, et al. Stem cell therapy with overexpressed VEGF and PDGF genes improves cardiac function in a rat infarct model. PLoS One. 2009;4(10):e7325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  498. Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005;35(11):677–86.

    Article  CAS  PubMed  Google Scholar 

  499. Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 2012;94(2):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Seeger FH, Zeiher AM, Dimmeler S. MicroRNAs in stem cell function and regenerative therapy of the heart. Arterioscler Thromb Vasc Biol. 2013;33(8):1739–46.

    Article  CAS  PubMed  Google Scholar 

  501. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–3.

    Article  CAS  PubMed  Google Scholar 

  502. van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008;103(9):919–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  503. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495(7439):107–10.

    Article  CAS  PubMed  Google Scholar 

  504. Iekushi K, Seeger F, Assmus B, Zeiher AM, Dimmeler S. Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction. Circulation. 2012;125(14):1765–73, S1761–7.

    Article  CAS  PubMed  Google Scholar 

  505. Kishore R, Verma SK, Mackie AR, Vaughan EE, Abramova TV, Aiko I, et al. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One. 2013;8(4):e60161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.

    Article  CAS  PubMed  Google Scholar 

  507. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53.

    Article  CAS  PubMed  Google Scholar 

  508. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  509. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11(8):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  510. Thorrez L, Sampaolesi M. The future of induced pluripotent stem cells for cardiac therapy and drug development. Curr Pharm Des. 2011;17(30):3258–70.

    Article  CAS  PubMed  Google Scholar 

  511. Radisic M, Christman KL. Materials science and tissue engineering: repairing the heart. Mayo Clin Proc. 2013;88(8):884–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42(2):181–4.

    Article  PubMed  Google Scholar 

  513. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654–60.

    Article  CAS  PubMed  Google Scholar 

  514. Zimmermann WH, Schneiderbanger K, Schubert P, Didié M, Münzel F, Heubach JF, et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  515. Chiu LL, Iyer RK, King JP, Radisic M. Biphasic electrical field stimulation aids in tissue engineering of multicell-type cardiac organoids. Tissue Eng Part A. 2011;17(11–12):1465–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  516. Chiu LL, Montgomery M, Liang Y, Liu H, Radisic M. Perfusable branching microvessel bed for vascularization of engineered tissues. Proc Natl Acad Sci U S A. 2012;109(50):E3414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  517. Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 2013;4(1399):1399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  518. Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, et al. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A. 2010;107(25):11507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Rane AA, Christman KL. Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol. 2011;58(25):2615–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Amuzescu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amuzescu, B., Istrate, B., Mubagwa, K. (2016). Impact of Cellular Mechanisms of Ischemia on CABG Failure. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics