Skip to main content

Atherothrombotic Risk Factors and Graft Disease

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

Coronary artery bypass grafting has been a valuable surgical technique in the management of coronary artery disease since the early 1960s as it reduced angina and mortality from coronary events for decades. Once the procedure became more available, many patients around the world benefited from these operations. However, in time, grafted vessels appeared to suffer, just as much as the native coronary arteries, from a similar process of progressive atherosclerosis and vessel wall degradation. In the case when venous grafting is used, generally the easiest and most available type of grafting, this pathology is currently known as vein graft disease and is characterized by intimal hyperplasia, stenosis, and eventually occlusion of the grafted vein. This chapter focuses, in an evidence-based manner, on both classical and new risk factors that are known to associate with the development of vein graft disease, or are still under investigation to determine to which extent they may contribute to the development of such vascular lesions. In addition, the chapter discusses current clinically available treatments, and others that are still under research, for the prevention of venous graft disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hassantash SA, Bikdeli B, Kalantarian S, Sadeghian M, Afshar H. Pathophysiology of aorto-coronary saphenous vein bypass graft disease. Asian Cardiovasc Thorac Ann. 2008;16(4):331–6.

    Article  PubMed  Google Scholar 

  2. Parang P, Arora R. Coronary vein graft disease: pathogenesis and prevention. Can J Cardiol. 2009;25:e57–62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–26.

    Article  CAS  PubMed  Google Scholar 

  4. Kalantarian S, Sadeghian M, Afshar H. Pathophysiology of aortocoronary saphenous vein bypass graft disease. Asian Cardiovasc Thorac Ann. 2008;16:331–6.

    Article  PubMed  Google Scholar 

  5. Mehta RH, Bhatt DL, Steg GPh, Goto S, Hirsch AT, Liau CS, et al, on behalf of the REACH Registry Investigators. Modifiable risk factors control and its relationship with 1 year outcomes after coronary artery bypass surgery: insights from the REACH registry. Eur Heart J. 2008; 29:3052–60.

    Google Scholar 

  6. Daida H, Yokoi H, Miyano H, Mokuno H, Satoh H, Kottke TE, et al. Relation of saphenous vein graft obstruction to serum cholesterol levels. J Am Coll Cardiol. 1995;25:193–7.

    Article  CAS  PubMed  Google Scholar 

  7. Atkinson J, Forman M, Vaughn W. Morphologic changes in long-term saphenous vein bypass grafts. Chest. 1985;8:341–8.

    Article  Google Scholar 

  8. van Brussel BL, Plokker T, Ernst SMPG, Ernst NM, Knaepen PJJ, Koomen EM, Tyssen JGP, Vermeulen FEE, Voors AA. Venous coronary artery bypass surgery: a 15-year follow-up study. Circulation. 1993;88:87–92.

    Google Scholar 

  9. Kugiyama K, Sakamoto T, Misumi I, Sugiyama S, Ohgushi M, Ogawa H, et al. Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells. Circ Res. 1993;73:335–43.

    Article  CAS  PubMed  Google Scholar 

  10. Cataldo G, Braga M, Pirotta N, Lavezzari M, Rovelli F, Marubini E, on behalf of Studio Indobufene nel Bypass Aortocoronarico (SINBA). Factors influencing 1-year patency of coronary artery saphenous vein grafts: Studio Indobufene nel Bypass Aortocoronarico (SINBA). Circulation. 1993;88(Suppl II):II-93–8.

    Google Scholar 

  11. Cobbaert C, Sergeant P, Meyns B, Szecsi J, Kesteleot H. Time course of serum Lp(a) in men after coronary artery bypass grafting. Acta Cardiol. 1992;47:529–42.

    CAS  PubMed  Google Scholar 

  12. Cushing GL, Gaubatz JW, Nava ML, Burdick BJ, Bocan TMA, Guyton JR, et al. Quantitation and localization of apolipoproteins (a) and B in coronary artery bypass vein grafts resected at reoperation. Arteriosclerosis. 1989;9:593–603.

    Article  CAS  PubMed  Google Scholar 

  13. Hoff HF, Beck GJ, Skibinski CI, Jurgens G, O’Neil J, Kramer J, Lytle B. Serum Lp(a) level as a predictor of vein graft stenosis after coronary artery bypass surgery in patients. Circulation. 1988;77:1238–44.

    Article  CAS  PubMed  Google Scholar 

  14. Eritsland J, Arnesen H, Seljeflot I, Abdelnoor M, Gronseth K, Berg K, Malinow MR. Influence of serum lipoprotein (a) and homocysteine levels on graft patency after coronary artery bypass grafting. Am J Cardiol. 1994;74:1099–102.

    Article  CAS  PubMed  Google Scholar 

  15. The Post Coronary Artery Bypass Graft Trial Investigators. The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. N Engl J Med. 1997;336:153–62.

    Article  Google Scholar 

  16. Domanski MJ, Borkowf CB, Campeau L, Knatterud GL, White C, Hoogwerf B, et al., and the Post-CABG Trial Investigators. Prognostic factors for atherosclerosis progression in saphenous vein grafts. The Postcoronary Artery Bypass Graft (Post-CABG) Trial. J Am Coll Cardiol. 2000;36:1877–83.

    Google Scholar 

  17. Campeau L, Hunninghake DB, Knatterud GL, et al. Aggressive cholesterol lowering delays saphenous vein graft atherosclerosis in women, the elderly, and patients with associated risk factors: NHLBI Post Coronary Artery Bypass Graft clinical trial. Circulation. 1999;99:3241–7.

    Article  CAS  PubMed  Google Scholar 

  18. Porter KE, Turner NA. Statins for the prevention of vein graft stenosis: a role for inhibition of matrix metalloproteinase-9. Biochem Soc Trans. 2002;30(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  19. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vinagre I, Sánchez-Quesada JL, Sánchez-Hernández J, Santos D, Ordoñez-Llanos J, De Leiva A, et al. Inflammatory biomarkers in type 2 diabetic patients: effect of glycemic control and impact of LDL subfraction phenotype. Cardiovasc Diabetol. 2014;13:34. doi:10.1186/1475-2840-13-34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, et al. Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999;67(4):1045–52.

    Article  CAS  PubMed  Google Scholar 

  22. The Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217–25 [Erratum, N Engl J Med. 1997;336:147].

    Article  Google Scholar 

  23. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al, for the FREEDOM Trial Investigators. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367:2375–84.

    Google Scholar 

  24. Singh SK, Desai ND, Petroff SD, Deb S, Cohen EA, Radhakrishnan S, et al., Radial Artery Patency Study Investigators. The impact of diabetic status on coronary artery bypass graft patency: insights from the radial artery patency study. Circulation. 2008;118:S222–5.

    Google Scholar 

  25. Deb S, Singh SK, Moussa F, Tsubota H, Une D, Kiss A, et al, on behalf of the Radial Artery Patency Study Investigators. The long-term impact of diabetes on graft patency after coronary artery bypass grafting surgery: a substudy of the multicenter Radial Artery Patency Study. J Thorac Cardiovasc Surg. 2014;148(4):1246–53.

    Google Scholar 

  26. Salerno TA. Surgical revascularization for patients with diabetes: do all roads lead to Rome? J Thorac Cardiovasc Surg. 2014;148(4):1273–4.

    Article  PubMed  Google Scholar 

  27. Sako EY, Brooks MM, Hardison RH, Schaff H, Frye RL. Coronary artery bypass in patients with type 2 diabetes: experience from the Bypass Angioplasty Revascularization Investigation 2 Diabetes trial. J Thorac Cardiov Surg. 2014;148(4):1268–72.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alexander JH, Hafley G, Harrington RA, Peterson ED, Ferguson TB Jr, Lorenz TJ, et al. On behalf of the PREVENT IV Investigators. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA. 2005;294(19):2446-54.

    Google Scholar 

  29. Koshizaka M, Lopes R, Reyes EM, Gibson M, Schulte PJ, Hafley G, et al. Long-term clinical and angiographic outcomes in patients with diabetes undergoing coronary artery bypass graft surgery: Results from the PRoject of Ex-vivo Vein graft ENgineering via Transfection IV Trial. Am Heart J. 2015;169:175–84.

    Article  PubMed  Google Scholar 

  30. Koochemeshki V, Salmanzadeh HR, Sayyadi H, Amestejani M, Salehi Ardabili S. The effect of diabetes mellitus on short term mortality and morbidity after isolated coronary artery bypass grafting surgery. Int Cardiovasc Res J. 2013;7(2):41–5.

    PubMed  PubMed Central  Google Scholar 

  31. Baars T, Konorza T, Kahlert P, Möhlenkamp S, Erbel R, Heusch G, Kleinbongard P. Aspirate TNFα reflects saphenous vein bypass graft restenosis risk in diabetic patients. Cardiovasc Diabetol. 2013;12:12. doi:10.1186/1475-2840-12-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunkwall JS, Bergqvist D. Prostacyclin release from the human saphenous vein in diabetics is lower than in non-diabetics. World J Surg. 1992;16:1141–6.

    Article  CAS  PubMed  Google Scholar 

  33. Cavender JB, Rogers WJ, Fisher LD, Gersh BJ, Coggin CJ, Myers WO. Effects of smoking on survival and morbidity in patients randomized to medical or surgical therapy in the Coronary Artery Surgery Study (CASS): 10 year follow-up. J Am Coll Cardiol. 1992;20:287–94.

    Article  CAS  PubMed  Google Scholar 

  34. Cameron AA, Davis KB, Rogers WJ. Recurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). J Am Coll Cardiol. 1995;4:895–9.

    Article  Google Scholar 

  35. Campeau L, Enjalbert M, Lesperance J, Bourassa MG, Kwiterovich Jr P, Wacholder S, Sniderman A. The relation of risk factors to the development of atherosclerosis in saphenous vein bypass grafts and the progression of disease in the native circulation: a study 10 years after aortocoronary bypass surgery. N Engl J Med. 1984;311:1329–32.

    Article  CAS  PubMed  Google Scholar 

  36. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Prog Cardiovasc Dis. 1991;34:45–68.

    Article  CAS  PubMed  Google Scholar 

  37. Iwinski J, Iwinska A, Ochala A. Haemodynamic properties of the internal mammary artery and saphenous vein in young persons and patients with moderate hypertension. Eur Heart J. 1996;8:546. Abstract.

    Google Scholar 

  38. Nguyen HC, Grossi EA, LeBoutillier III M, Steinberg BM, Rifkin DB, Baumann FG, et al. Mammary artery versus saphenous vein grafts: assessment of basic fibroblast growth factor receptors. Ann Thorac Surg. 1994;58:308–11.

    Article  CAS  PubMed  Google Scholar 

  39. Une D, Kulik A, Voisine P, Le May M, Ruel M. Correlates of saphenous vein graft hyperplasia and occlusion 1 year after coronary artery bypass grafting analysis from the CASCADE randomized trial. Circulation. 2013;128 Suppl 1:S213–8.

    Article  CAS  PubMed  Google Scholar 

  40. Fox KM, EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomized, double-blind, placebo-controlled, multicenter trial (the EUROPA study). Lancet. 2003;362(9386):782–8.

    Article  CAS  PubMed  Google Scholar 

  41. Drenger B, Fontes ML, Miao Y, Mathew JP, Gozal Y, Aronson S, et al. Patterns of use of perioperative angiotensin-converting enzyme inhibitors in coronary artery bypass graft surgery with cardiopulmonary bypass: effects on in-hospital morbidity and mortality. Circulation. 2012;126:261–9.

    Article  CAS  PubMed  Google Scholar 

  42. Oosterga M, Voors AA, Pinto YM, Buikema H, Grandjean JG, Kingma JH, Crijns HJ, van Gilst WH. Effects of quinapril on clinical outcome after coronary artery bypass grafting (The QUO VADIS Study). QUinapril on Vascular Ace and Determinants of Ischemia. Am J Cardiol. 2001;87(5):542–6.

    Article  CAS  PubMed  Google Scholar 

  43. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary. J Thorac Cardiov Sur. 2012;143(1): 4–34.

    Google Scholar 

  44. White CR, Haidekker M, Bao X, Frangos JA. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation. 2001;103:2508–13.

    Article  CAS  PubMed  Google Scholar 

  45. Bao X, Lu C, Frangos JA. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler Thromb Vasc Biol. 1999;19:996–1003.

    Article  CAS  PubMed  Google Scholar 

  46. Yucel S, Bahcivan M, Gol MK, Erenler BH, Kolbakir F, Keceligil HT. Reduced intimal hyperplasia in rabbits via medical therapy after carotid venous bypass. Tex Heart Inst J. 2009;36:387–92.

    PubMed  PubMed Central  Google Scholar 

  47. Solymoss BC, Nadeau P, Millette D, Campeau L. Late thrombosis of saphenous vein coronary bypass grafts related to risk factors. Circulation. 1988;78(Suppl I):I-140–3.

    CAS  Google Scholar 

  48. Voors AA, van Brussel BL, Plokker T, Ernst SMPG, Ernst NM, Koomen EM, et al. Smoking and cardiac events after venous coronary bypass surgery: a 15-year follow-up study. Circulation. 1996;93:42–4.

    Article  CAS  PubMed  Google Scholar 

  49. van Domburg RT, Meeter K, van Berkel DF, Veldkamp RF, van Herwerden LA, Bogers AJ. Smoking cessation reduces mortality after coronary artery bypass surgery: a 20-year follow-up study. J Am Coll Cardiol. 2000;36:878–83.

    Article  PubMed  Google Scholar 

  50. Goldman S, Zadina K, Moritz K, Ovitt T, Sethi G, Copeland J, et al, for the VA Cooperative Study Group. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery. J Am Coll Cardiol. 2004;44:2149–56.

    Google Scholar 

  51. Benowitz NL, Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy. J Am Coll Cardiol. 1997;29:1422–31.

    Article  CAS  PubMed  Google Scholar 

  52. Selcuk MT, Selcuk H, Maden O, Ozeke O, Ulupinar H, Temizhan A, et al. Effect of obesity on saphenous vein graft stenosis in patients with postoperative recurrent angina. Acta Cardiol. 2007;62(4):397–402.

    Article  PubMed  Google Scholar 

  53. Wee CC, Girotra S, Weinstein AR, Mittleman MA, Mukamal KJ. The relationship between obesity and atherosclerotic progression and prognosis among patients with coronary artery bypass grafts. J Am Coll Cardiol. 2008;52:620–5.

    Article  PubMed  Google Scholar 

  54. Campeau L, Hunninghake DB, Knatterud GL, White C, Domanski M, Forman S, et al., on behalf of Post CABG Trial Investigators. Aggressive cholesterol lowering delays saphenous vein graft atherosclerosis in women, the elderly, and patients with associated risk factors. NHLBI post coronary artery bypass graft clinical trial. Circulation. 1999;99:3241–7.

    Google Scholar 

  55. Jin R, Grunkemeier GL, Furnary AP, Handy JR, for the Providence Health System Cardiovascular Study Group. Is obesity a risk factor for mortality in coronary artery bypass surgery? Circulation. 2005;111:3359–65.

    Article  PubMed  Google Scholar 

  56. Pan W, Hindler K, Lee VV, Vaughn WK, Collard CD. Obesity in diabetic patients undergoing coronary artery bypass graft surgery is associated with increased postoperative morbidity. Anesthesiology. 2006;104(3):441–7.

    Article  PubMed  Google Scholar 

  57. Prabhakar G, Haan CK, Peterson ED, Coombs LP, Cruzzavala JL, Murray GF. The risks of moderate and extreme obesity for coronary artery bypass grafting outcomes: a study from the Society of Thoracic Surgeons’ database. Ann Thorac Surg. 2002;74:1125–31.

    Article  PubMed  Google Scholar 

  58. Taylor J. The obesity paradox. Eur Heart J. 2011;32:1575–6.

    CAS  PubMed  Google Scholar 

  59. Benedetto U, Danese C, Codispoti M. Obesity paradox in coronary artery bypass grafting: myth or reality? J Thorac Cardiovasc Surg. 2014;147(5):1517–23.

    Article  PubMed  Google Scholar 

  60. Yilmaz MB, Guray U, Guray Y, Biyikoglu SF, Tandogan I, Sasmaz H, et al. Metabolic syndrome negatively impacts early patency of saphenous vein grafts. Coron Artery Dis. 2006;17(1):41–4.

    Article  PubMed  Google Scholar 

  61. Angeloni E, Melina G, Benedetto U, Refice S, Capuano F, Roscitano A, et al. Metabolic syndrome affects midterm outcome after coronary artery bypass grafting. Ann Thorac Surg. 2012;93(2):537–44.

    Article  PubMed  Google Scholar 

  62. Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998;280:605–13.

    Article  CAS  PubMed  Google Scholar 

  63. Herrington DM, Reboussin DM, Brosnihan KB, Sharp PC, Shumaker SA, Snyder TE, et al. Effects of estrogen replacement on the progression of coronary-artery atherosclerosis. N Engl J Med. 2000;343:522–9.

    Article  CAS  PubMed  Google Scholar 

  64. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349:523–34.

    Article  CAS  PubMed  Google Scholar 

  65. Sullivan JM, El-Zeky F, Vander Zwaag R, Ramanathan KB. Effect on survival of estrogen replacement therapy after coronary artery bypass grafting. Am J Cardiol. 1997;79:847–50.

    Article  CAS  PubMed  Google Scholar 

  66. Nussmeier NA, Mora-Mangano C, Fontes M, Schwann NM, Mangano DT, for the Investigators of the Ischemia and Education Foundation and the Multicenter Study of Perioperative Ischemia (McSPI) Research Group. Hormone replacement therapy is safe in women undergoing coronary artery bypass grafting. Tex Heart Inst J. 2005;32:507–14.

    Google Scholar 

  67. Dashwood MR, Savage K, Dooley A, Shi-Wen X, Abraham DJ, Souza DS. Effect of vein graft harvesting on endothelial nitric oxide synthase and nitric oxide production. Ann Thorac Surg. 2005;80(3):939–44.

    Article  PubMed  Google Scholar 

  68. Shuhaiber JH, Evans AN, Massad MG, Geha AS. Mechanisms and future directions for prevention of vein graft failure in coronary bypass surgery. Eur J Cardiothorac Surg. 2002;22:387–96.

    Article  PubMed  Google Scholar 

  69. Kown MH, Yamaguchi A, Jahncke CL, Miniati D, Murata S, Grunenfelder J, et al. L-arginine polymers inhibit the development of vein graft neointimal hyperplasia. J Thorac Cardiovasc Surg. 2001;121(5):971–80.

    Article  CAS  PubMed  Google Scholar 

  70. Cagirci G, Cay S, Karakurt O, Buyukterzi Z, Yazihan N, Kilic H, et al. Association between plasma asymmetrical dimethylarginine activity and saphenous vein graft disease in patients with coronary bypass. Coron Artery Dis. 2010;21(1):20–5.

    Article  PubMed  Google Scholar 

  71. Dashwood MR, Loesch A. Inducible nitric oxide synthase and vein graft performance in patients undergoing coronary artery bypass surgery: physiological or pathophysiological role? Curr Vasc Pharmacol. 2014;12:144–51.

    Article  CAS  PubMed  Google Scholar 

  72. Price DT, Loscalzo J. Cellular adhesion molecules and atherogenesis. Am J Med. 1999;107:85–97.

    Article  CAS  PubMed  Google Scholar 

  73. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  74. Aras D, Erbay AR, Maden O, Topaloglu S, Ozbakir C, Ozdemir O, et al. Evaluation of serum levels of solubilized adhesion molecules in patients with aortocoronary saphenous vein grafts. Coron Artery Dis. 2005;16(7):431–6.

    Article  PubMed  Google Scholar 

  75. Mizuno Y, Jacob RF, Mason RP. Inflammation and the development of atherosclerosis. J Atheroscler Thromb. 2011;18(5):351–8.

    Article  CAS  PubMed  Google Scholar 

  76. Egashira K. Clinical importance of endothelial function in arteriosclerosis and ischemic heart disease. Circ J. 2002;66(6):529–33.

    Article  CAS  PubMed  Google Scholar 

  77. Niemann-Jonsson A, Dimayuga P, Jovinge S, Calara F, Ares MP, Fredrikson GN, Nilsson J. Accumulation of LDL in rat arteries is associated with activation of tumor necrosis factor-alpha expression. Arterioscler Thromb Vasc Biol. 2000;20(10):2205–11.

    Article  CAS  PubMed  Google Scholar 

  78. Prasongsukarn K, Chaisri U, Chartburus P, Wetchabut K, Benjathummarak S, Khachansaksumet V, Maneerat Y. Phenotypic alterations in human saphenous vein culture induced by tumor necrosis factor-alpha and lipoproteins: a preliminary development of an initial atherosclerotic plaque model. Lipids Health Dis. 2013;12:132.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nielsen LB. Atherogenecity of lipoprotein(a) and oxidized low density lipoprotein: insight from in vivo studies of arterial wall influx, degradation and efflux. Atherosclerosis. 1999;143(2):229–43.

    Article  CAS  PubMed  Google Scholar 

  80. Kruth HS, Huang W, Ishii I, Zhang WY. Macrophage foam cell formation with native low density lipoprotein. J Biol Chem. 2002;277(37):34573–80.

    Article  CAS  PubMed  Google Scholar 

  81. Kleinbongard P, Baars T, Möhlenkamp S, Kahlert P, Erbel R, Heusch G. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: more endothelin but less particulate debris. Am J Physiol Heart Circ Physiol. 2013;305(8):H1222–9.

    Article  CAS  PubMed  Google Scholar 

  82. Böse D, Leineweber K, Konorza T, Zahn A, Bröcker-Preuss M, Mann K, et al. Release of TNF-alpha during stent implantation into saphenous vein aortocoronary bypass grafts and its relation to plaque extrusion and restenosis. Am J Physiol Heart Circ Physiol. 2007;292(5):H2295–9.

    Article  PubMed  CAS  Google Scholar 

  83. Qin L, Huang Q, Zhang H, Liu R, Tellides G, Min W, Yu L. SOCS1 prevents graft arteriosclerosis by preserving endothelial cell function. J Am Coll Cardiol. 2014;63(1):21–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldman S, Zadina K, Krasnika B, Moritz T, Sethi G, Copeland J, et al. For the department of veterans affairs cooperative study group No 297. Predictors of graft patency 3 years after coronary artery bypass graft surgery. J Am Coll Cardiol. 1997;29:1563–8.

    Article  CAS  PubMed  Google Scholar 

  85. Shah PJ, Gordon I, Fuller J, Seevanayagam S, Rosalion A, Tatoulis J, et al. Factors affecting saphenous vein graft patency: clinical and angiographic study in 1,402 symptomatic patients operated on between 1977 and 1999. J Thorac Cardiovasc Surg. 2003;126(6):1972–7.

    Article  PubMed  Google Scholar 

  86. Roth JA, Cukingnan RA, Brown BG, Gocka E, Carey JS. Factors influencing patency of saphenous vein grafts. Ann Thorac Surg. 1979;28:176–83.

    Article  CAS  PubMed  Google Scholar 

  87. Cosgrove DM, Loop FD, Saunders CL, Lytle BW, Kramer JR. Should coronary arteries with less than fifty percent stenosis be bypassed? J Thorac Cardiovasc Surg. 1981;82:520–30.

    CAS  PubMed  Google Scholar 

  88. Buxton BF, Hayward PAR, Newcomb AE, Moten S, Seevanayagam S, Gordon I. Choice of conduits for coronary artery bypass grafting: craft or science? Eur J Cardiothorac Surg. 2009;35:658–70.

    Article  PubMed  Google Scholar 

  89. Campos EE, Cinderella JA, Farhi ER. Long-term angiographic follow-up of normal and minimally diseased saphenous vein grafts. J Am Coll Cardiol. 1993;21:1175–80.

    Article  CAS  PubMed  Google Scholar 

  90. Ellis SG, Brener SJ, DeLuca S, Tuzcu EM, Raymond RE, Whitlow PL, Topol EJ. Late myocardial ischemic events after saphenous vein graft intervention – importance of initially ‘nonsignificant’ vein graft lesions. Am J Cardiol. 1997;79:1460–4.

    Article  CAS  PubMed  Google Scholar 

  91. Eltzschig HK, Collard CD. Vascular ischemia and reperfusion injury. Br Med Bull. 2004;70:71–86.

    Article  CAS  PubMed  Google Scholar 

  92. Sepehripour AH, Jarral OA, Shipolini AR, McCormack DJ. Does a ‘no-touch’ technique result in better vein patency? Interact Cardiovasc Thorac Surg. 2011;13:626–30.

    Article  PubMed  Google Scholar 

  93. Cheng J, Du J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol. 2007;27:1744–51.

    Article  CAS  PubMed  Google Scholar 

  94. Halper J. Proteoglycans and diseases of soft tissues. Adv Exp Med Biol. 2014;802:49–58.

    Article  CAS  PubMed  Google Scholar 

  95. Kinsella MG, Bressler SL, Wight TN. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr. 2004;14(3):203–34.

    Article  CAS  PubMed  Google Scholar 

  96. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res. 2004;94(9):1158–67.

    Article  CAS  PubMed  Google Scholar 

  97. Merrilees MJ, Beaumont B, Scott LJ. Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: correlation to patency. Coron Artery Dis. 2001;12(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  98. Perek B, Malinska A, Misterski M, Ostalska-Nowicka D, Zabel M, Perek A, Nowicki M. Preexisting high expression of matrix metalloproteinase-2 in tunica media of saphenous vein conduits is associated with unfavorable long-term outcomes after coronary artery bypass grafting. Biomed Res Int. 2013;2013:730721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Perek B, Malińska A, Ostalska-Nowicka D, Puślecki M, Ligowski M, Misterski M, et al. Cytokeratin 8 in venous grafts: a factor of unfavorable long-term prognosis in coronary artery bypass grafting patients. Cardiol J. 2013;20(6):583–91.

    Article  PubMed  Google Scholar 

  100. Cook NS, Ubben D. Fibrinogen as a major risk factor in cardiovascular disease. Trends Pharmacol Sci. 1990;11:444–51.

    Article  PubMed  Google Scholar 

  101. Nascetti S, Elosua R, Pena A, et al. Variables associated with fibrinogen in a population-based study: interaction between smoking and age on fibrinogen concentration. Eur J Epidemiol. 2001;17:953–8.

    Article  CAS  PubMed  Google Scholar 

  102. Cersit S, Cay S, Koza Y, Acikgoz SK, Cabuk G, Senturk B, Dogan P. Association between plasma fibrinogen level and saphenous vein graft patency. Acta Cardiol Sin. 2014;30:223–8.

    Google Scholar 

  103. Yanagawa B, Algarni K. Clinical, biochemical, and genetic predictors of coronary artery bypass graft failure. J Thorac Cardiov Surg. 2014;148(2):515–20.

    Article  CAS  PubMed  Google Scholar 

  104. Papageorgiou N, Tousoulis D, Siasos G, Stefanadis C. Is fibrinogen a marker of inflammation in coronary artery disease? Hellenic J Cardiol. 2010;51:1–9.

    PubMed  Google Scholar 

  105. Gagliardi A, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk. Atherosclerosis. 2009;202:11–7.

    Article  CAS  PubMed  Google Scholar 

  106. Lin GM, Li YH, Zheng NC, Lai CP, Lin CL, Wang JH, et al. Serum uric acid as an independent predictor of mortality in high-risk patients with obstructive coronary artery disease: a prospective observational cohort study from the ET-CHD registry, 1997–2003. J Cardiol. 2013;61:122–7.

    Article  PubMed  Google Scholar 

  107. Tavil Y, Sen N, Hizal F, et al. Relationship between elevated levels of serum uric acid and saphenous vein graft disease. Turk Kardiyol Dern Ars. 2008;36:14–8.

    PubMed  Google Scholar 

  108. Hillis GS, Cuthbertson BH, Gibson PH, McNeilly PH, Maclennan JD, Jeffrey GS, et al. Uric acid levels and outcome from coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2009;138:200–5.

    Article  CAS  PubMed  Google Scholar 

  109. Aengevaeren WR. Beyond lipids-the role of the endothelium in coronary artery disease. Atherosclerosis. 1999;147:S11–6.

    Article  CAS  PubMed  Google Scholar 

  110. Ridker PM. Novel risk factors and markers for coronary disease. Adv Intern Med. 2000;45:391–418.

    CAS  PubMed  Google Scholar 

  111. Patel VB, Robbins MA, Topol EJ. C-reactive protein: a ‘golden marker’ for inflammation and coronary artery disease. Cleve Clin J Med. 2001;68(6):521–34.

    Article  CAS  PubMed  Google Scholar 

  112. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991;324:1149–55.

    Article  CAS  PubMed  Google Scholar 

  113. Mudd SH, Skovby F, Levy HL. The natural history of homocystinuria due to cystathionine β-synthase deficiency. Am J Hum Genet. 1985;37:1–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Girelli D, Martinelli N, Olivieri O, Pizzolo F, Friso S, Faccini G, et al. Hyperhomocysteinemia and mortality after coronary artery bypass grafting. PLoS One. 2006;1:83. doi:10.1371/journal.pone.0000083.

    Article  CAS  Google Scholar 

  115. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354:1578–88.

    Article  CAS  PubMed  Google Scholar 

  116. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;354:1567–77.

    Article  CAS  PubMed  Google Scholar 

  117. Pompella A, Emdin M, Passino C, Paolicchi A. The significance of serum ϒ-glutamyl-transferase in cardiovascular diseases. Clin Chem Lab Med. 2004;42:1085–91.

    Article  CAS  PubMed  Google Scholar 

  118. Paolicchi A, Emdin M, Ghliozeni E, Ciancia E, Passino C, Popoff G, Pompella A. Human atherosclerotic plaques contain gamma-glutamyl transpeptidase enzyme activity. Circulation. 2004;109:1440.

    Article  PubMed  Google Scholar 

  119. Frey A, Meckelein B, Weiler-Güttler H, Möckel B, Flach R, Gassen HG. Pericytes of the brain microvasculature express gamma-glutamyl transpeptidase. Eur J Biochem. 1991;202:421–9.

    Article  CAS  PubMed  Google Scholar 

  120. Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H, and the Vorarlberg Health Monitoring and Promotion Program Study Group. Gamma-glutamyl transferase as a risk factor for cardiovascular disease mortality. An epidemiological investigation in a cohort of 163 944 Austrian adults. Circulation. 2005;112:2130–7.

    Article  CAS  PubMed  Google Scholar 

  121. Ulus T, Yıldırır A, Sade LE, Balta S, Ozin B, Sezgin A, Müderrisoğlu H. Serum gamma-glutamyltransferase activity: a new marker for coronary artery bypass graft disease. Turk Kardiyol Dern Ars. 2011;39(3):205–13.

    Article  PubMed  Google Scholar 

  122. Goldman S, Copeland J, Moritz T, Henderson W, Zadina K, Ovitt T, et al. Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy. Results of a Veterans Administration Cooperative Study. Circulation. 1989;80:1190–7.

    Article  CAS  PubMed  Google Scholar 

  123. Goldman S, Copeland J, Moritz T, Henderson W, Zadina K, Ovitt T, et al. Long-term graft patency (3 years) after coronary artery surgery: effects of aspirin: results of a VA Cooperative study. Circulation. 1994;89:1138–43.

    Article  CAS  PubMed  Google Scholar 

  124. McLean RC, Nazarian SM, Gluckman TJ, Schulman SP, Thiemann DR, Shapiro EP, et al. Relative importance of patient, procedural and anatomic risk factors for early vein graft thrombosis after coronary artery bypass graft surgery. J Cardiovasc Surg (Torino). 2011;52(6):877–85.

    CAS  Google Scholar 

  125. Gluckman TJ, McLean RC, Schulman SP, Kickler TS, Shapiro EP, Conte JV, et al. Effects of aspirin responsiveness and platelet reactivity on early vein graft thrombosis after coronary artery bypass graft surgery. J Am Coll Cardiol. 2011;57:1069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zimmermann N, Kienzle P, Weber AA, et al. Aspirin resistance after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2001;121:982–4.

    Article  CAS  PubMed  Google Scholar 

  127. Zimmermann N, Wenk A, Kim U, et al. Functional and biochemical evaluation of platelet aspirin resistance after coronary artery bypass surgery. Circulation. 2003;108:542–7.

    Article  CAS  PubMed  Google Scholar 

  128. Crescente M, Di Castelnuovo A, Iacoviello L, De Gaetano G, Cerletti C. PFA-100 closure time to predict cardiovascular events in aspirin treated cardiovascular patients: a meta-analysis of 19 studies comprising 3,003 patients. Thromb Haemost. 2008;99:1129–31.

    CAS  PubMed  Google Scholar 

  129. Fuchs I, Frossard M, Spiel A, Riedmuller E, Laggner AN, Jilma B. Platelet function in patients with acute coronary syndrome (ACS) predicts recurrent ACS. J Thromb Haemost. 2006;4:2547–52.

    Article  CAS  PubMed  Google Scholar 

  130. Everett BM, Yeh R, Foo SY, Criss D, Van Cott EM, Laposata M, et al. Prevalence of heparin/platelet factor 4 antibodies before and after cardiac surgery. Ann Thorac Surg. 2007;83:592–7.

    Article  PubMed  Google Scholar 

  131. Liu JC, Lewis BE, Steen LH, Grassman ED, Bakhos M, Blakeman B. Patency of coronary artery bypass grafts in patients with heparin-induced thrombocytopenia. Am J Cardiol. 2002;89:979–81.

    Article  PubMed  Google Scholar 

  132. Bennett-Guerrero E, Slaughter TF, White WD, Welsby IJ, Greenberg CS, El Moalem H, Ortel TL. Preoperative anti-PF4/heparin antibody level predicts adverse outcome after cardiac surgery. J Thorac Cardiovasc Surg. 2005;130:1567–72.

    Article  CAS  PubMed  Google Scholar 

  133. Gluckman TJ, Segal JB, Schulman SP, et al. Effect of anti-platelet factor-4/heparin antibody induction on early saphenous vein graft occlusion after coronary artery bypass surgery. J Thromb Haemost. 2009;7:1457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cosgrove D, Loop F, Lytle B, et al. Predictions of reoperation after myocardial revascularization. J Thorac Cardiovasc Surg. 1986;92:811–21.

    CAS  PubMed  Google Scholar 

  135. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52.

    Article  PubMed  Google Scholar 

  136. Baars T, Kleinbongard P, Böse D, Konorza T, Möhlenkamp S, Hippler J, et al. Saphenous vein aorto-coronary graft atherosclerosis in patients with chronic kidney disease: more plaque calcification and necrosis, but less vasoconstrictor potential. Basic Res Cardiol. 2012;107(6):303.

    Article  PubMed  Google Scholar 

  137. Huang TM, Wu VC, Young GH, Lin YF, Shiao CC, Wu PC, et al. National Taiwan University Hospital Study Group of Acute Renal Failure. Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol. 2011;22(1):156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mickleborough LL, Walker PM, Takagi Y, Ohashi M, Ivanov J, Tamariz M. Risk factors for stroke in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1996;112(5):1250–8.

    Article  CAS  PubMed  Google Scholar 

  139. Graham MM, Ghali WA, Faris PD, Galbraith PD, Norris CM, Knudtson ML, et al., for the Alberta Provincial Project for Outcomes Assessment in Coronary Heart Disease (APPROACH) Investigators. Survival after coronary revascularization in the elderly. Circulation. 2002;105(20):2378–84.

    Google Scholar 

  140. Nicolini F, Molardi A, Verdichizzo D, Gallazzi MC, Spaggiari I, Cocconcelli F, et al. Coronary artery surgery in octogenarians: evolving strategies for the improvement in early and late results. Heart Vessels. 2012;27(6):559–67.

    Article  PubMed  Google Scholar 

  141. Ivanov J, Weisel RD, David TE, Naylor CD. Fifteen-year trends in risk severity and operative mortality in elderly patients undergoing coronary artery bypass graft surgery. Circulation. 1998;97:673–80.

    Article  CAS  PubMed  Google Scholar 

  142. Perek B, Malińska A, Nowicki M, Misterski M, Ostalska-Nowicka D, Jemielity M. Histological evaluation of age-related variations in saphenous vein grafts used for coronary artery bypass grafting. Arch Med Sci. 2012;8(6):1041–7.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Tan ES, van der Meer J, Jan de Kam P, Dunselman PH, Mulder BJ, Ascoop CA, et al. Worse clinical outcome but similar graft patency in women versus men one year after coronary artery bypass graft surgery owing to an excess of exposed risk factors in women. CABADAS. Research Group of the Interuniversity Cardiology Institute of The Netherlands. Coronary Artery Bypass graft occlusion by Aspirin, Dipyridamole and Acenocoumarol/phenoprocoumon Study. J Am Coll Cardiol. 1999;34(6):1760–8.

    Article  CAS  PubMed  Google Scholar 

  144. Koch CG, Weng YS, Zhou SX, Savino JS, Mathew JP, Hsu PH, et al. Ischemia Research and Education Foundation; Multicenter Study of Perioperative Ischemia Research Group. Prevalence of risk factors, and not gender per se, determines short- and long-term survival after coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2003;17(5):585–93.

    Google Scholar 

  145. O’Connor NJ, Morton JR, Birkmeyer JD, Olmstead EM, O’Connor GT, for the Northern New England Cardiovascular Disease Study Group. Effect of coronary artery diameter in patients undergoing coronary bypass surgery. Circulation. 1996;93:652–5.

    Article  PubMed  Google Scholar 

  146. Toumpoulis IK, Anagnostopoulos CE, Balaram SK, Rokkas CK, Swistel DG, Ashton Jr RC, et al. Assessment of independent predictors for long-term mortality between women and men after coronary artery bypass grafting: are women different from men? J Thorac Cardiovasc Surg. 2006;131(2):343–51. Epub 2006 Jan 18.

    Article  PubMed  Google Scholar 

  147. Abramov D, Tamariz MG, Sever JY, Christakis GT, Bhatnagar G, Heenan AL, et al. The influence of gender on the outcome of coronary artery bypass surgery. Ann Thorac Surg. 2000;70(3):800–5.

    Article  CAS  PubMed  Google Scholar 

  148. Kulier A, Levin J, Moser R, Rumpold-Seitlinger G, Tudor IC, Stephanie A, et al; for the Investigators of the Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation. Impact of preoperative anemia on outcome in patients undergoing coronary artery bypass graft surgery. Circulation. 2007;116:471–9.

    Google Scholar 

  149. Spiess BD, Ley C, Body SC, Siegel LC, Stover EP, Maddi R, et al. Hematocrit value on intensive care unit entry influences the frequency of Q-wave myocardial infarction after coronary artery bypass grafting. The Institutions of the Multicenter Study of Perioperative Ischemia (McSPI) Research Group. J Thorac Cardiovasc Surg. 1998;116(3):460–7.

    Article  CAS  PubMed  Google Scholar 

  150. Murphy PJ, Connery C, Hicks Jr GL, Blumberg N. Homologous blood transfusion as a risk factor for postoperative infection after coronary artery bypass graft operations. J Thorac Cardiovasc Surg. 1992;104(4):1092–9.

    CAS  PubMed  Google Scholar 

  151. Shimbo D, Davidson KW, Haas DC, Fuster V, Badimon JJ. Negative impact of depression on outcomes in patients with coronary artery disease: mechanisms, treatment considerations, and future directions. J Thromb Haemost. 2005;3:897–908.

    Article  CAS  PubMed  Google Scholar 

  152. Blumenthal JA, Lett HS, Babyak MA, White W, Smith PK, Mark DB, et al. Depression as a risk factor for mortality after coronary artery bypass surgery. Lancet. 2003;362:604–9.

    Article  PubMed  Google Scholar 

  153. Mallik S, Krumholz HM, Lin ZQ, Kasl SV, Mattera JA, Roumains SA, Vaccarino V. Patients with depressive symptoms have lower health status benefits after coronary artery bypass surgery. Circulation. 2005;111:271–7.

    Article  PubMed  Google Scholar 

  154. Kop WJ, Gottdiener JS, Tangen CM, Fried LP, McBurnie MA, Walston J, et al. Inflammation and coagulation factors in persons >65 years of age with symptoms of depression but without evidence of myocardial ischemia. Am J Cardiol. 2002;89:419–24.

    Article  CAS  PubMed  Google Scholar 

  155. Carney RM, Freedland KE, Veith RC. Depression, the autonomic nervous system, and coronary heart disease. Psychosom Med. 2005;67 suppl 1:S29–33.

    Article  PubMed  Google Scholar 

  156. Wellenius GA, Mukamal KJ, Kulshreshtha A, Asonganyi S, Mittleman MA. Depressive symptoms and the risk of atherosclerotic progression among patients with coronary artery bypass grafts. Circulation. 2008;117:2313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chocron S, Vandel P, Durst C, Laluc F, Kaili D, Chocron M, Etievent JP. Antidepressant therapy in patients undergoing coronary artery bypass grafting: the MOTIV-CABG trial. Ann Thorac Surg. 2013;95(5):1609–18.

    Article  PubMed  Google Scholar 

  158. Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD, Collins R, Danesh J. Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet. 2006;367:651–8.

    Article  CAS  PubMed  Google Scholar 

  159. Podgoreanu MV, Schwinn DA. New paradigms in cardiovascular medicine: emerging technologies and practices: perioperative genomics. J Am Coll Cardiol. 2005;46:1965–77.

    Article  PubMed  Google Scholar 

  160. Emiroglu O, Durdu S, Egin Y, Akar AR, Alakoc YD, Zaim C, et al. Thrombotic gene polymorphisms and postoperative outcome after coronary artery bypass graft surgery. J Cardiothorac Surg. 2011;6:120.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Massoudy P, Thielmann M, Muller-Beissenhirtz H, Görlinger K, Dietrich W, Herget-Rosenthal S, Jakob H. Thrombophilia in cardiac surgery-patients with symptomatic factor V Leiden. J Card Surg. 2009;24:379–82.

    Article  PubMed  Google Scholar 

  162. Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 1997;100:S87–9.

    CAS  PubMed  Google Scholar 

  163. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol. 2006;84:115–24.

    Article  CAS  PubMed  Google Scholar 

  164. Southerland KW, Frazier SB, Bowles DE, Milano CA, Kontos CD. Gene therapy for the prevention of vein graft disease. Transl Res. 2013;161(4):321–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Morishita R, Gibbons GH, Horiuchi M, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sousa JE, Costa MA, Abizaid AC, Rensing BJ, Abizaid AS, Tanajura LF, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation. 2001;104:2007–11.

    Article  CAS  PubMed  Google Scholar 

  167. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15:807–26.

    Article  CAS  PubMed  Google Scholar 

  168. Lopes RD, Williams JB, Mehta RH, Reyes EM, Hafley GE, Allen KB, et al. Edifoligide and long-term outcomes after coronary artery bypass grafting: PREVENT IV 5-year results. Am Heart J. 2012;164(3):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeta Badila MD, PhD, FESC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Badila, E. (2016). Atherothrombotic Risk Factors and Graft Disease. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics