Skip to main content

Innate Immunity and Vein Graft Disease

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

For proper functioning as a venous bypass graft, a venous conduit should become adapted to the arterial circulation. Proliferation of smooth muscle cells is a key element in the arterialization process, but also immune cells play a crucial role. Immune cells such as macrophages infiltrate the vessel wall, and secrete cytokines and growth factors that enhance the process of vein graft arterialization. Later on, these inflammatory cells act in a negative role since innate immune responses have been linked to vein graft failure. Cholesterol and oxidized low density lipoproteins (oxLDL) also trigger these responses resulting in the development of atherosclerotic lesions during advanced vein graft disease. Here we show the results of targeting members of the innate immune system such as toll-like receptors, the complement system, cytokines, mast cells, and natural killer (NK) cells. Targeted deletion of certain immune cells or genes encoding pro-inflammatory factors results in decreased vein graft thickening in mouse models, whereas stimulation of inflammatory responses accelerates it. New therapies are in development based on these concepts of involvement of the immune system in vein graft disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shukla N, Jeremy JY. Pathophysiology of saphenous vein graft failure: a brief overview of interventions. Curr Opin Pharmacol. 2012;12:114–20.

    Article  CAS  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  3. Athanasiou T, Saso S, Rao C, Vecht J, Grapsa J, Dunning J, et al. Radial artery versus saphenous vein conduits for coronary artery bypass surgery: forty years of competition – which conduit offers better patency? A systematic review and meta-analysis. Eur J Cardiothorac Surg. 2011;40(1):208–20.

    Article  PubMed  Google Scholar 

  4. Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97(9):916–31.

    Article  CAS  PubMed  Google Scholar 

  5. Pregowski J, Tyczynski P, Mintz GS, Kim SW, Witkowski A, Waksman R, et al. Incidence and clinical correlates of ruptured plaques in saphenous vein grafts: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(12):1974–9.

    Article  PubMed  Google Scholar 

  6. Wallitt EJ, Jevon M, Hornick PI. Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann Thorac Surg. 2007;84(1):317–23.

    Article  PubMed  Google Scholar 

  7. Owens CD. Adaptive changes in autogenous vein grafts for arterial reconstruction: clinical implications. J Vasc Surg. 2010;51(3):736–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Owens CD, Rybicki FJ, Wake N, Schanzer A, Mitsouras D, Gerhard-Herman MD, et al. Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation. J Vasc Surg. 2008;47(6):1235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol Cell Biol. 2006;84(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  10. Shimizu K, Mitchell RN. The role of chemokines in transplant graft arterial disease. Arterioscler Thromb Vasc Biol. 2008;28(11):1937–49.

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res. 2007;100(7):967–78.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell RN. Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol. 2009;4:19–47.

    Article  CAS  PubMed  Google Scholar 

  13. Schepers A, Pires NM, Eefting D, de Vries MR, van Bockel JH, Quax PH. Short-term dexamethasone treatment inhibits vein graft thickening in hypercholesterolemic ApoE3Leiden transgenic mice. J Vasc Surg. 2006;43(4):809–15.

    Article  PubMed  Google Scholar 

  14. Nguyen BT, Yu P, Tao M, Hao S, Jiang T, Ozaki CK. Perivascular innate immune events modulate early murine vein graft adaptations. J Vasc Surg. 2013;57:486–92.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  CAS  PubMed  Google Scholar 

  16. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54(23):2129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell JA, Ryffel B, Quesniaux VF, Cartwright N, Paul-Clark M. Role of pattern-recognition receptors in cardiovascular health and disease. Biochem Soc Trans. 2007;35(Pt 6):1449–52.

    Article  CAS  PubMed  Google Scholar 

  19. Erridge C. The roles of pathogen-associated molecular patterns in atherosclerosis. Trends Cardiovasc Med. 2008;18(2):52–6.

    Article  CAS  PubMed  Google Scholar 

  20. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010;2010:672395.

    Google Scholar 

  21. Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost. 2011;106(5):858–67.

    Article  CAS  PubMed  Google Scholar 

  22. Karper JC, de Vries MR, van den Brand BT, Hoefer IE, Fischer JW, Jukema JW, et al. Toll-like receptor 4 is involved in human and mouse vein graft remodeling, and local gene silencing reduces vein graft disease in hypercholesterolemic APOE*3Leiden mice. Arterioscler Thromb Vasc Biol. 2011;31(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  23. Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J Lipid Res. 2009;50(Suppl):S340–5.

    PubMed  PubMed Central  Google Scholar 

  24. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101(29):10679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hollestelle SC, de Vries MR, Van Keulen JK, Schoneveld AH, Vink A, Strijder CF, et al. Toll-like receptor 4 is involved in outward arterial remodeling. Circulation. 2004;109(3):393–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest. 2005;115(11):3149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoneveld AH, Hoefer I, Sluijter JP, Laman JD, de Kleijn DP, Pasterkamp G. Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis. 2008;197(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  28. Versteeg D, Dol E, Hoefer IE, Flier S, Buhre WF, de Kleijn D, et al. Toll-like receptor 2 and 4 response and expression on monocytes decrease rapidly in patients undergoing arterial surgery and are related to preoperative smoking. Shock. 2009;31(1):21–7.

    Article  PubMed  Google Scholar 

  29. Karper JC, Ewing MM, Habets KL, de Vries MR, Peters EA, van Oeveren-Rietdijk AM, et al. Blocking toll-like receptors 7 and 9 reduces postinterventional remodeling via reduced macrophage activation, foam cell formation, and migration. Arterioscler Thromb Vasc Biol. 2012;32(8):e72–80.

    Article  CAS  PubMed  Google Scholar 

  30. Cole JE, Navin TJ, Cross AJ, Goddard ME, Alexopoulou L, Mitra AT, et al. Unexpected protective role for Toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci U S A. 2011;108(6):2372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hawlisch H, Kohl J. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol. 2006;43(1–2):13–21.

    Article  CAS  PubMed  Google Scholar 

  32. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201(6):871–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50.

    Article  CAS  PubMed  Google Scholar 

  35. Speidl WS, Kastl SP, Huber K, Wojta J. Complement in atherosclerosis: friend or foe? J Thromb Haemost. 2011;9(3):428–40.

    Article  CAS  PubMed  Google Scholar 

  36. Szeplaki G, Varga L, Fust G, Prohaszka Z. Role of complement in the pathomechanism of atherosclerotic vascular diseases. Mol Immunol. 2009;46(14):2784–93.

    Article  CAS  PubMed  Google Scholar 

  37. Schepers A, de Vries MR, van Leuven CJ, Grimbergen JM, Holers VM, Daha MR, et al. Inhibition of complement component C3 reduces vein graft atherosclerosis in apolipoprotein E3-Leiden transgenic mice. Circulation. 2006;114(25):2831–8.

    Article  CAS  PubMed  Google Scholar 

  38. de Vries MR, Wezel A, Schepers A, van Santbrink PJ, Woodruff TM, Niessen HW, et al. Complement factor C5a as mast cell activator mediates vascular remodeling in vein graft disease. Cardiovasc Res. 2013;97:311–20.

    Article  PubMed  Google Scholar 

  39. Krijnen PA, Kupreishvili K, de Vries MR, Schepers A, Stooker W, Vonk AB, et al. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure. Atherosclerosis. 2012;220:86–92.

    Article  CAS  PubMed  Google Scholar 

  40. Wezel A, de Vries MR, Lagraauw HM, Foks AC, Kuiper J, Quax PH, et al. Complement factor C5a induces atherosclerotic plaque disruptions. J Cell Mol Med. 2014;18(10):2020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith PK, Shernan SK, Chen JC, Carrier M, Verrier ED, Adams PX, et al. Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials. J Thorac Cardiovasc Surg. 2011;142(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  42. Faries PL, Marin ML, Veith FJ, Ramirez JA, Suggs WD, Parsons RE, et al. Immunolocalization and temporal distribution of cytokine expression during the development of vein graft intimal hyperplasia in an experimental model. J Vasc Surg. 1996;24(3):463–71.

    Article  CAS  PubMed  Google Scholar 

  43. Sterpetti AV, Cucina A, Lepidi S, Randone B, Corvino V, D’Angelo LS, et al. Formation of myointimal hyperplasia and cytokine production in experimental vein grafts. Surgery. 1998;123(4):461–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang Z, Berceli SA, Pfahnl CL, Wu L, Goldman D, Tao M, et al. Wall shear modulation of cytokines in early vein grafts. J Vasc Surg. 2004;40(2):345–50.

    Article  PubMed  Google Scholar 

  45. Ozaki CK. Cytokines and the early vein graft: strategies to enhance durability. J Vasc Surg. 2007;45 Suppl A:A92–8.

    Article  PubMed  Google Scholar 

  46. Yu P, Nguyen BT, Tao M, Jiang T, Mauro CR, Wang Y, et al. Lack of interleukin-1 signaling results in perturbed early vein graft wall adaptations. Surgery. 2013;153(1):63–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li P, Li YL, Li ZY, Wu YN, Zhang CC, Xi A, et al. Cross talk between vascular smooth muscle cells and monocytes through interleukin-1beta/interleukin-18 signaling promotes vein graft thickening. Arterioscler Thromb Vasc Biol. 2014;34(9):2001–11.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Z, Shukla A, Miller BL, Espino DR, Tao M, Berceli SA, et al. Tumor necrosis factor-alpha and the early vein graft. J Vasc Surg. 2007;45(1):169–76.

    Article  PubMed  Google Scholar 

  49. Zhang L, Peppel K, Brian L, Chien L, Freedman NJ. Vein graft neointimal hyperplasia is exacerbated by tumor necrosis factor receptor-1 signaling in graft-intrinsic cells. Arterioscler Thromb Vasc Biol. 2004;24(12):2277–83.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Sivashanmugam P, Wu JH, Brian L, Exum ST, Freedman NJ, et al. Tumor necrosis factor receptor-2 signaling attenuates vein graft neointima formation by promoting endothelial recovery. Arterioscler Thromb Vasc Biol. 2008;28(2):284–9.

    Article  PubMed  Google Scholar 

  51. Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 2008;28(11):1950–9.

    Article  CAS  PubMed  Google Scholar 

  52. Koenen RR, Weber C. Chemokines: established and novel targets in atherosclerosis. EMBO Mol Med. 2011;3(12):713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schepers A, Eefting D, Bonta PI, Grimbergen JM, de Vries MR, van Weel V, et al. Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2006;26(9):2063–9.

    Article  CAS  PubMed  Google Scholar 

  54. Eefting D, Bot I, de Vries MR, Schepers A, van Bockel JH, van Berkel TJ, et al. Local lentiviral short hairpin RNA silencing of CCR2 inhibits vein graft thickening in hypercholesterolemic apolipoprotein E3-Leiden mice. J Vasc Surg. 2009;50(1):152–60.

    Article  PubMed  Google Scholar 

  55. Tatewaki H, Egashira K, Kimura S, Nishida T, Morita S, Tominaga R. Blockade of monocyte chemoattractant protein-1 by adenoviral gene transfer inhibits experimental vein graft neointimal formation. J Vasc Surg. 2007;45(6):1236–43.

    Article  PubMed  Google Scholar 

  56. Fu C, Yu P, Tao M, Gupta T, Moldawer LL, Berceli SA, et al. Monocyte chemoattractant protein-1/CCR2 axis promotes vein graft neointimal hyperplasia through its signaling in graft-extrinsic cell populations. Arterioscler Thromb Vasc Biol. 2012;32(10):2418–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ali ZA, Bursill CA, Hu Y, Choudhury RP, Xu Q, Greaves DR, et al. Gene transfer of a broad spectrum CC-chemokine inhibitor reduces vein graft atherosclerosis in apolipoprotein E-knockout mice. Circulation. 2005;112(9 Suppl):I235–41.

    PubMed  Google Scholar 

  58. Bursill CA, Cash JL, Channon KM, Greaves DR. Membrane-bound CC chemokine inhibitor 35 K provides localized inhibition of CC chemokine activity in vitro and in vivo. J Immunol. 2006;177(8):5567–73.

    Article  CAS  PubMed  Google Scholar 

  59. Shimizu K, Minami M, Shubiki R, Lopez-Ilasaca M, MacFarlane L, Asami Y, et al. CC chemokine receptor-1 activates intimal smooth muscle-like cells in graft arterial disease. Circulation. 2009;120(18):1800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang L, Brian L, Freedman NJ. Vein graft neointimal hyperplasia is exacerbated by CXCR4 signaling in vein graft-extrinsic cells. J Vasc Surg. 2012;56(5):1390–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheng J, Wang Y, Liang A, Jia L, Du J. FSP-1 silencing in bone marrow cells suppresses neointima formation in vein graft. Circ Res. 2012;110(2):230–40.

    Article  CAS  PubMed  Google Scholar 

  62. Malinska A, Perek B, Buczkowski P, Kowalska K, Ostalska-Nowicka D, Witkiewicz W, et al. CD68 expression in aortocoronary saphenous vein bypass grafts. Histochem Cell Biol. 2013;140(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  63. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol. 2008;8(10):802–15.

    Article  CAS  PubMed  Google Scholar 

  65. Packard RR, Lichtman AH, Libby P. Innate and adaptive immunity in atherosclerosis. Semin Immunopathol. 2009;31(1):5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y, et al. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol. 2006;41(3):431–40.

    Article  CAS  PubMed  Google Scholar 

  67. Ewing MM, de Vries MR, Nordzell M, Pettersson K, de Boer HC, van Zonneveld AJ, et al. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice. Arterioscler Thromb Vasc Biol. 2011;31(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  68. Cherian SM, Bobryshev YV, Liang H, Inder SJ, Wang AY, Lord RS, et al. Immunohistochemical and ultrastructural evidence that dendritic cells infiltrate stenotic aortocoronary saphenous vein bypass grafts. Cardiovasc Surg. 2001;9(2):194–200.

    Article  CAS  PubMed  Google Scholar 

  69. Ozmen J, Bobryshev YV, Lord RS. CD40 co-stimulatory molecule expression by dendritic cells in primary atherosclerotic lesions in carotid arteries and in stenotic saphenous vein coronary artery grafts. Cardiovasc Surg. 2001;9(4):329–33.

    Article  CAS  PubMed  Google Scholar 

  70. Dashwood MR. Distension of the saphenous vein during graft preparation: markers of inflammation or endothelium? Ann Thorac Surg. 2012;94(6):2177–8.

    Article  PubMed  Google Scholar 

  71. Schlitt A, Pruefer D, Buerke U, Russ M, Dahm M, Oelert H, et al. Neutrophil adherence to activated saphenous vein and mammary endothelium after graft preparation. Ann Thorac Surg. 2006;81(4):1262–8.

    Article  PubMed  Google Scholar 

  72. Drechsler M, Doring Y, Megens RT, Soehnlein O. Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thromb Haemost. 2011;106(5):839–48.

    Article  CAS  PubMed  Google Scholar 

  73. Leclercq A, Houard X, Philippe M, Ollivier V, Sebbag U, Meilhac O, et al. Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment. J Leukoc Biol. 2007;82(6):1420–9.

    Article  CAS  PubMed  Google Scholar 

  74. Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res. 2012;110(6):875–88.

    Article  CAS  PubMed  Google Scholar 

  75. Yazdani SK, Farb A, Nakano M, Vorpahl M, Ladich E, Finn AV, et al. Pathology of drug-eluting versus bare-metal stents in saphenous vein bypass graft lesions. JACC Cardiovasc Interv. 2012;5(6):666–74.

    Article  PubMed  PubMed Central  Google Scholar 

  76. de Vries MR, Niessen HW, Lowik CW, Hamming JF, Jukema JW, Quax PH. Plaque rupture complications in murine atherosclerotic vein grafts can be prevented by TIMP-1 overexpression. PLoS One. 2012;7(10):e47134.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol. 2006;315:13–34.

    PubMed  Google Scholar 

  78. Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012;18(5):673–83.

    Article  CAS  PubMed  Google Scholar 

  80. Bot I, de Jager SC, Bot M, van Heiningen SH, de Groot P, Veldhuizen RW, et al. The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circ Res. 2010;106(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  81. el-Lati SG, Dahinden CA, Church MK. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol. 1994;102(5):803–6.

    Article  CAS  PubMed  Google Scholar 

  82. Cross KS, el-Sanadiki MN, Murray JJ, Mikat EM, McCann RL, Hagen PO. Mast cell infiltration: a possible mechanism for vein graft vasospasm. Surgery. 1988;104(2):171–7.

    CAS  PubMed  Google Scholar 

  83. Kovanen PT. Mast cells and degradation of pericellular and extracellular matrices: potential contributions to erosion, rupture and intraplaque haemorrhage of atherosclerotic plaques. Biochem Soc Trans. 2007;35(Pt 5):857–61.

    Article  CAS  PubMed  Google Scholar 

  84. Bot I, van Berkel TJ, Biessen EA. Mast cells: pivotal players in cardiovascular diseases. Curr Cardiol Rev. 2008;4(3):170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wezel A, Quax PH, Kuiper J, Bot I. The role of mast cells in atherosclerosis. Hamostaseologie. 2014;7:35(1).

    Google Scholar 

  86. Whitman SC, Rateri DL, Szilvassy SJ, Yokoyama W, Daugherty A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb Vasc Biol. 2004;24(6):1049–54.

    Article  CAS  PubMed  Google Scholar 

  87. de Vries MR, Seghers L, van Bergen J, Peters HA, de Jong RC, Hamming JF, et al. C57BL/6 NK cell gene complex is crucially involved in vascular remodeling. J Mol Cell Cardiol. 2013;64:51–8.

    Article  PubMed  Google Scholar 

  88. Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100(6):1575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1997;94(9):4642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol. 2010;134(1):33–46.

    Article  CAS  PubMed  Google Scholar 

  91. Carpenter JP, Tomaszewski JE. Human saphenous vein allograft bypass grafts: immune response. J Vasc Surg. 1998;27(3):492–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margreet R. de Vries PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Vries, M.R., Jukema, J.W., Quax, P.H.A. (2016). Innate Immunity and Vein Graft Disease. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics