Skip to main content

Competitive Flow and Coronary Artery Bypass Grafts

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

We herein review the current evidence on the effect of chronic native competitive flow on coronary artery bypass patency and function and provide an overview of the methods to evaluate competitive flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glineur D, Hanet C. Competitive flow in coronary bypass surgery: is it a problem? Curr Opin Cardiol. 2012;27:620–8.

    Article  PubMed  Google Scholar 

  2. Barner HB. Double internal mammary-coronary artery bypass. Arch Surg. 1974;109:627–30.

    Article  CAS  PubMed  Google Scholar 

  3. Geha AS, Baue AE. Early and late results of coronary revascularization with saphenous vein and internal mammary artery grafts. Am J Surg. 1979;137:456–63.

    Article  CAS  PubMed  Google Scholar 

  4. Sabik 3rd JF, Lytle BW, Blackstone EH, et al. Does competitive flow reduce internal thoracic artery graft patency? Ann Thorac Surg. 2003;76:1490–6.

    Article  PubMed  Google Scholar 

  5. Hashimoto H, Isshiki T, Ikari Y, et al. Effects of competitive blood flow on arterial graft patency and diameter. Medium-term postoperative follow-up. J Thorac Cardiovasc Surg. 1996;111:399–407.

    Article  CAS  PubMed  Google Scholar 

  6. Villareal RP, Mathur VS. The string phenomenon: an important cause of internal mammary artery graft failure. Tex Heart Inst J. 2000;27:346–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gaudino M, Alessandrini F, Nasso G, et al. Severity of coronary artery stenosis at preoperative angiography and midterm mammary graft status. Ann Thorac Surg. 2002;74:119–21.

    Article  PubMed  Google Scholar 

  8. Hess OM, Büchi M, Kirkeeide R, et al. Potential role of coronary vasoconstriction in ischaemic heart disease: effect of exercise. Eur Heart J. 1990;11(Suppl B):58–64.

    Article  PubMed  Google Scholar 

  9. Hanet C, Schroeder E, Michel X, et al. Flow-induced vasomotor response to tachycardia of the human internal mammary artery and saphenous vein grafts late following bypass surgery. Circulation. 1991;84 Suppl 5:268–74.

    Google Scholar 

  10. Gould KL, Lipscomb K. Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  CAS  PubMed  Google Scholar 

  11. Rittger H, Schertel B, Schmidt M, et al. Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses. EuroIntervention. 2009;5:127–32.

    Article  PubMed  Google Scholar 

  12. Uren NG, Melin JA, De Bruyne B, et al. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782–8.

    Article  CAS  PubMed  Google Scholar 

  13. White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–24.

    Article  CAS  PubMed  Google Scholar 

  14. Kaiser GC, Barner HB, Tyras DH, et al. Myocardial revascularization: a rebuttal of the cooperative study. Ann Surg. 1978;188:331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toth G, Hamilos M, Pyxaras S, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J. 2014;35:2831–8.

    Article  PubMed  Google Scholar 

  16. Seiler C, Kirkeeide RL, Gould KL. Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation. 1992;85:1987–2003.

    Article  CAS  PubMed  Google Scholar 

  17. Hermiller JB, Cusma JT, Spero LA, et al. Quantitative and qualitative coronary angiographic analysis: review of methods, utility, and limitations. Cathet Cardiovasc Diagn. 1992;25:110–31.

    Article  CAS  PubMed  Google Scholar 

  18. Mintz GS, Popma JJ, Pichard AD, et al. Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systematic study of target lesion eccentricity in 1446 lesions. Circulation. 1996;93:924–31.

    Article  CAS  PubMed  Google Scholar 

  19. Tu S, Xu L, Ligthart J, et al. In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int J Cardiovasc Imaging. 2012;28:1315–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Porto I, Dato I, Todaro D, et al. Comparison of two- and three-dimensional quantitative coronary angiography to intravascular ultrasound in the assessment of intermediate left main stenosis. Am J Cardiol. 2012;109:1600–7.

    Article  PubMed  Google Scholar 

  21. Yong AS, Ng AC, Brieger D, et al. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J. 2011;32:345–53.

    Article  PubMed  Google Scholar 

  22. Leone AM, De Caterina AR, Basile E, et al. Influence of the amount of myocardium subtended by a stenosis on fractional flow reserve. Circ Cardiovasc Interv. 2013;6:29–36.

    Article  PubMed  Google Scholar 

  23. Ortiz-Pérez JT, Meyers SN, Lee DC, et al. Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J. 2007;28:1750–8.

    Article  PubMed  Google Scholar 

  24. Leone AM, De Caterina AR, De Maria GL, et al. Three-dimensional quantitative coronary angiography and quantification of jeopardised myocardium to predict functional significance of intermediate coronary artery stenosis. EuroIntervention. 2015;11:308–18.

    Article  PubMed  Google Scholar 

  25. Cao C, Ang SC, Wolak K, et al. A meta-analysis of randomized controlled trials on mid-term angiographic outcomes for radial artery versus saphenous vein in coronary artery bypass graft surgery. Ann Cardiothorac Surg. 2013;2:401–7.

    PubMed  PubMed Central  Google Scholar 

  26. Frey RR, Bruschke AV, Vermeulen FE. Serial angiographic evaluation 1 year and 9 years after aorta–coronary bypass. A study of 55 patients chosen at random. J Thorac Cardiovasc Surg. 1984;87:167–74.

    CAS  PubMed  Google Scholar 

  27. Gohlke H, Gohlke-Barwolf C, Sturzenhofecker P, et al. Improved graft patency with anticoagulant therapy after aortocoronary bypass surgery: a prospective, randomized study. Circulation. 1981;64:22–7.

    Google Scholar 

  28. Bogaty P, Brecker SJ, White SE, et al. Comparison of coronary angiographic findings in acute and chronic first presentation of ischemic heart disease. Circulation. 1993;87:1938–46.

    Article  CAS  PubMed  Google Scholar 

  29. Gensini G. Coronary arteriography. New York: Futura Publishing Co; 1975.

    Google Scholar 

  30. Sullivan DR, Marwick TH, Freedman SB. A new method of scoring coronary angiograms to reflect extent of coronary atherosclerosis and improve correlation with major risk factors. Am Heart J. 1990;119:1262–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hays AG, Hirsch GA, Kelle S, et al. Noninvasive visualization of coronary artery endothelial function in healthy subjects and in patients with coronary artery disease. J Am Coll Cardiol. 2010;56:1657–65.

    Article  PubMed  Google Scholar 

  32. Meng X, Fu Q, Sun W, et al. Competitive flow arising from varying degrees of coronary artery stenosis affects the blood flow and the production of nitric oxide and endothelin in the internal mammary artery graft. Eur J Cardiothorac Surg. 2013;43:1022–7.

    Article  PubMed  Google Scholar 

  33. De Bruyne B, Sarma J. Fractional flow reserve: a review: invasive imaging. Heart. 2008;94:949–59.

    Article  PubMed  Google Scholar 

  34. De Bruyne B, Bartunek J, Sys SU, et al. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation. 1995;92:39–46.

    Article  PubMed  Google Scholar 

  35. Bartunek J, Van Schuerbeeck E, De Bruyne B. Comparison of exercise electrocardiography and dobutamine echocardiography with invasively assessed myocardial fractional flow reserve in evaluation of severity of coronary arterial narrowing. Am J Cardiol. 1997;79:478–81.

    Article  CAS  PubMed  Google Scholar 

  36. Abe M, Tomiyama H, Yoshida H. Diastolic fractional flow reserve to assess the functional severity of moderate coronary artery stenoses: comparison with fractional flow reserve and coronary flow velocity reserve. Circulation. 2000;102:2365–70.

    Article  CAS  PubMed  Google Scholar 

  37. Samady H, Lepper W, Powers ER, et al. Fractional flow reserve of infarct-related arteries identifies reversible defects on noninvasive myocardial perfusion imaging early after myocardial infarction. J Am Coll Cardiol. 2006;47:2187–93.

    Article  PubMed  Google Scholar 

  38. De Bruyne B, Baudhuin T, Melin JA, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994;89:1013–22.

    Article  PubMed  Google Scholar 

  39. Pijls NH, Bech GJ, De Bruyne B, et al. Clinical assessment of functional stenosis severity: use of coronary pressure measurements for the decision to bypass a lesion. Ann Thorac Surg. 1997;63 Suppl 6:6–11.

    Article  Google Scholar 

  40. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS), European Association for Percutaneous Cardiovascular Interventions (EAPCI), Wijns W, Kolh P, Danchin N, et al. Guidelines on myocardial revascularization. Eur Heart J. 2010;31:2501–55.

    Article  Google Scholar 

  41. Botman KJ, Pijls NH, Bech JW, et al. Percutaneous coronary intervention or bypass surgery in multivessel disease? A tailored approach based on coronary pressure measurement. Catheter Cardiovasc Interv. 2004;63:184–91.

    Article  PubMed  Google Scholar 

  42. Botman CJ, Schonberger J, Koolen S, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83:2093–7.

    Article  PubMed  Google Scholar 

  43. Toth G, De Bruyne B, Casselman F, et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation. 2013;128:1405–11.

    Article  PubMed  Google Scholar 

  44. Van de Hoef TP, Meuwissen M, Piek JJ. Fractional flow reserve and beyond. Heart. 2013;99:1699–705.

    Article  PubMed  Google Scholar 

  45. Kern MJ, Lerman A, Bech JW, et al; American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114:1321–41.

    Google Scholar 

  46. Meuwissen M, Chamuleau SA, Siebes M, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103:184–7.

    Article  CAS  PubMed  Google Scholar 

  47. Meuwissen M, Siebes M, Chamuleau SA, et al. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation. 2002;106:441–6.

    Article  PubMed  Google Scholar 

  48. van de Hoef TP, Nolte F, Damman P, et al. Diagnostic accuracy of combined intracoronary pressure and flow velocity information during baseline conditions: adenosine-free assessment of functional coronary lesion severity. Circ Cardiovasc Interv. 2012;5:508–14.

    Article  PubMed  Google Scholar 

  49. Kawasuji M, Sakakibara N, Takemura H, et al. Is internal thoracic artery grafting suitable for a moderately stenotic coronary artery? J Thorac Cardiovasc Surg. 1996;112:253–9.

    Article  CAS  PubMed  Google Scholar 

  50. Berger A, MacCarthy PA, Siebert U, et al. Long-term patency of internal mammary artery bypass grafts: relationship with preoperative severity of the native coronary artery stenosis. Circulation. 2004;110 Suppl 1:36–40.

    Google Scholar 

  51. Possati G, Gaudino M, Prati F, et al. Long-term results of the radial artery used for myocardial revascularization. Circulation. 2003;108:1350–4.

    Article  PubMed  Google Scholar 

  52. Nordgaard H, Swillens A, Nordhaug D, et al. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model. Cardiovasc Res. 2010;88:512–9.

    Article  CAS  PubMed  Google Scholar 

  53. Spence PA, Lust RM, Zeri RS, et al. Competitive flow from a fully patent coronary artery does not limit acute mammary graft flow. Ann Thorac Surg. 1992;54:21–5.

    Article  CAS  PubMed  Google Scholar 

  54. Lust RM, Zeri RS, Spence PA, et al. Effect of chronic native flow competition on internal thoracic artery grafts. Ann Thorac Surg. 1994;57:45–50.

    Article  CAS  PubMed  Google Scholar 

  55. Kawamura M, Nakajima H, Kobayashi J, et al. Patency rate of the internal thoracic artery to the left anterior descending artery bypass is reduced by competitive flow from the concomitant saphenous vein graft in the left coronary artery. Eur J Cardiothorac Surg. 2008;34:833–8.

    Article  PubMed  Google Scholar 

  56. Gaudino M, Massetti M, Farina P, et al. Chronic competitive flow from a patent arterial or venous graft to the circumflex system does not impair the long-term patency of internal thoracic artery to left anterior descending grafts in patients with isolated predivisional left main disease: long-term angiographic results of 2 different revascularization strategies. J Thorac Cardiovasc Surg. 2014;148:1856–9.

    Article  PubMed  Google Scholar 

  57. Gaudino M, Trani C, Luciani N, et al. The internal mammary artery malperfusion syndrome: late angiographic verification. Ann Thorac Surg. 1997;63:1257–61.

    Article  CAS  PubMed  Google Scholar 

  58. Carrel T, Kujawski T, Zünd G, et al. The internal mammary artery malperfusion syndrome: incidence, treatment and angiographic verification. Eur J Cardiothorac Surg. 1995;9:190–5.

    Article  CAS  PubMed  Google Scholar 

  59. Zünd G, Hauser M, Vogt P, et al. New approach to patency and flow assessment after left internal thoracic artery hypoperfusion syndrome with additional saphenous vein graft to the left anterior descending artery with phase-contrast magnetic resonance angiography. J Thorac Cardiovasc Surg. 1997;114:428–33.

    Article  PubMed  Google Scholar 

  60. Di Giammarco G, Rabozzi R. Can transit-time flow measurement improve graft patency and clinical outcome in patients undergoing coronary artery bypass grafting? Interact Cardiovasc Thorac Surg. 2010;11:635–40.

    Article  PubMed  Google Scholar 

  61. Kolozsvari R, Galajda Z, Ungvari T, et al. Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series. J Cardiothorac Surg. 2012;30:7–12.

    Google Scholar 

  62. Shammas RL, Mehta PM, Jolly SR, et al. Reversibility of the “string sign” of the left internal mammary artery graft. Cathet Cardiovasc Diagn. 1993;30:236–9.

    Article  CAS  PubMed  Google Scholar 

  63. Feld H, Navarro V, Kleeman H, et al. Early postoperative occlusion of a left internal mammary artery bypass graft with subsequent restoration of patency. Cathet Cardiovasc Diagn. 1992;27:280–3.

    Article  CAS  PubMed  Google Scholar 

  64. Manabe S, Fukui T, Shimokawa T, et al. Increased graft occlusion or string sign in composite arterial grafting for mildly stenosed target vessels. Ann Thorac Surg. 2010;89:683–7.

    Article  PubMed  Google Scholar 

  65. Gaudino M, Alessandrini F, Pragliola C, et al. Effect of target artery location and severity of stenosis on mid-term patency of aorta-anastomosed vs. internal thoracic artery-anastomosed radial artery grafts. Eur J Cardiothorac Surg. 2004;25:424–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Gaudino MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaudino, M. et al. (2016). Competitive Flow and Coronary Artery Bypass Grafts. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics