Skip to main content

Does Emergence Also Belong to the Scientific Image? Elements of an Alternative Theoretical Framework Towards an Objective Notion of Emergence

  • Chapter
  • First Online:
Epistemology, Knowledge and the Impact of Interaction

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 38))

  • 532 Accesses

Abstract

Emergence is a word that plays a central role in the natural or manifest image of the world, within which we organize our ordinary knowledge. Even though some interpretations of the “scientific image” leave no place for emergence, sciences increasingly made use of this word. But many philosophical arguments have been made against the consistence or validity of this concept. This chapter presents a computational view of emergence, alternative to the usual combinatorial view common among philosophers, that is formulated in terms of parts and wholes. It shows that computational emergence can be characterized in terms of causation, and that a subclass of computationally emergent processes displays many of the connotations of the scientific use of the term. After having so captured a concept of emergence, I turn to the question of applying the concept and testing whether some instantiations exist.

This work has been funded by the Project ‘Explabio’, ANR # 13-BSH3-0007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a question left open here – it’s enough to point that, following Kim, many philosophical approaches of emergence concern the emergence of properties, even if physicists like Laughlin (2005) talk of the emergence of laws. I argued (Huneman 2008b) that one should first of all speak of emergent processes instead of emergence of properties, these ones being emergent only in a derivative way.

  2. 2.

    See Roe 1981 on the entanglement of spontaneous generation idea with controversies over generation.

  3. 3.

    Idea that any physical fact or event has a cause which is also physical – notwithstanding what other facts or causes may exist. This postulate is supposed to be inherent to modern science.

  4. 4.

    See Atay and Jost 2004, 18.

  5. 5.

    Also Bechtel and Richardson 1992.

  6. 6.

    See also Bar Yam (2004).

  7. 7.

    Humphreys (1997) is the first systematic investigations of epistemological problems raised by the generalized use of simulations in the science. Huneman (2011; 2014) tackled this problem in the framework of evolutionary explanations.

  8. 8.

    Demonstration in Huneman 2008b.

  9. 9.

    Langton 1989. On this loop see Salzberg et al. 2003; Sayama 1998.

  10. 10.

    For emergence in ABM according to my criteria, see R. Wilson 2010.

  11. 11.

    A more precise description of levels of counterfactual dependency, defining modes of regularity and prediction, is done in Huneman (2012).

References

  • Anderson, P.W.: More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972)

    Article  Google Scholar 

  • Atay, F., Jost, J.: On the emergence of complex systems on the basis of the coordination of complex behaviors of their elements. Complexity 10(1), 17–22 (2004)

    Article  Google Scholar 

  • Bar Yam, Y.: A mathematical theory of strong emergence using multiscale variety. Complexity 9(6), 15–24 (2004)

    Article  Google Scholar 

  • Bechtel, W., Richardson, R.: Emergent phenomena and complex systems. In: Beckermann, A., Flohr, H., Kim, J. (eds.) Emergence or Reduction? pp. 257–287. de Gruyter, Berlin (1992)

    Google Scholar 

  • Bedau, M.: Weak emergence. In: Tomberlin, J. (ed.) Philosophical Perspectives: Mind, Causation, and World, vol. 11, pp. 375–399. Blackwell Publishers, Oxford (1997)

    Google Scholar 

  • Bedau, M.: Is weak emergence just in the mind? Mind. Mach. 18, 443–459 (2008)

    Article  Google Scholar 

  • Bedau, M., Humphreys, P.: Emergence. Contemporary Readings in Philosophy and Science. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  • Burke, M., Furnier, G., Prasad, K.: The emergence of local norms in networks. Complexity 11(5), 65–83 (2006)

    Article  Google Scholar 

  • Buss, S., Papadimitriou, C., Tsisiklis, J.: On the predictability of coupled automata: an allegory about chaos. Complex Syst. 5, 525–539 (1992)

    Google Scholar 

  • Chalmers, D.: Strong and weak emergence. In: Clayton, P., Davies, P. (eds.) The Re-emergence of Emergence, pp. 244–256. Oxford University Press, Oxford (2006)

    Google Scholar 

  • Churchland, P.M.: Eliminative materialism and the propositional attitudes. J. Philos. 78, 67–90 (1981)

    Google Scholar 

  • Corning, P.: The re-emergence of “emergence”: a venerable concept in search of a theory. Complexity 7(6), 18–30 (2002)

    Article  Google Scholar 

  • Crane, T.: The significance of emergence. In: Gillett, C., Loewer, B. (eds.) Physicalism and Its Discontents, pp. 207–224. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  • Crutchfield, J., Hanson, J.: Turbulent pattern bases for cellular automata. Phys. D 69, 279–301 (1993)

    Article  Google Scholar 

  • Crutchfield, J., Hanson, J.: Computational mechanics of cellular automata: an example. Phys. D 103, 169–189 (1997)

    Article  Google Scholar 

  • Crutchfield, J., Shalizi, C.: Pattern Discovery and Computational Mechanics. arXiv:cs/0001027v1 (2001)

    Google Scholar 

  • Descola, P.: Par-delà nature et culture. Gallimard, Paris (2005)

    Google Scholar 

  • Dessalles, J.L., Phan, D.: Emergence in multi-agent systems: cognitive hierarchy, detection, and complexity reduction. In: Mathieu, P., Beaufils, B., Brandouy, O. (eds.) Artificial economics. Lecture notes in economics and mathematical systems, vol. 564, pp. 147–159. Springer, Berlin/New York (2005)

    Chapter  Google Scholar 

  • Epstein, J.: Modeling civil violence. Proc. Natl. Acad. Sci. U. S. A. 99(3), 7243–7250 (2002)

    Article  Google Scholar 

  • Epstein, J.: Agent-based computational models and generative social science. In: Generative Social Science: Studies in Agent-Based Computational Modeling, pp. 4–46. Princeton University Press, Princeton ([1999] 2007)

    Google Scholar 

  • Gardner, M.: The fantastic combinations of John Conway's new solitaire game “life”. Sci Am 223, 120–123 (1970)

    Article  Google Scholar 

  • Gilbert, N.: Varieties of emergence. Paper presented at the Social Agents: Ecology, Exchange, and Evolution Conference, Chicago. http://www.soc.surrey.ac.uk/staff/ngilbert/ngpub/paper148_NG.pdf (2002)

  • Hall, N., Paul, D.: Causation and Counterfactuals. MIT Press, Cambridge (2004)

    Google Scholar 

  • Hanson, J., Crutchfield, J.: Computational mechanics of cellular automata: an example. Phys. D 103, 169–189 (1997)

    Article  Google Scholar 

  • Holland, J.: Hidden Order. How Adaptation Builds Complexity. Addison-Wesley, New York (1995)

    Google Scholar 

  • Holland, J.: Emergence. From Chaos to Order. Basic Books, New York (1998)

    Google Scholar 

  • Hovda, P.: Quantifying weak emergence. Mind. Mach. 18, 461–473 (2008)

    Article  Google Scholar 

  • Humphreys, P.: How properties emerge. Philos. Sci. 64, 53–70 (1997)

    Article  Google Scholar 

  • Humphreys, P.: Synchronic and diachronic emergence. Mind. Mach. 18, 431–442 (2008)

    Article  Google Scholar 

  • Huneman, P.: Combinatorial vs. computational views of emergence: emergence made ontological? Philos. Sci. 75, 595–607 (2008a)

    Article  Google Scholar 

  • Huneman, P.: Emergence and adaptation. Mind. Mach. 18, 493–520 (2008b)

    Article  Google Scholar 

  • Huneman, P.: Computer sciences meet evolutionary biology: issues in gradualism. In: Torres, J.L., Pombo, O., Symons, J., Rahman, S. (eds.) Special Sciences and the Unity of Science, pp. 200–225. Springer, Dordrecht (2011)

    Google Scholar 

  • Huneman, P.: Determinism and predictability: lessons from computational emergence. Synthese 185(2), 195–214 (2012)

    Article  Google Scholar 

  • Huneman, P.: Mapping an expanding territory: computer simulations in evolutionary biology. Hist. Philos. Life Sci. 36(1), 60–89 (2014)

    Google Scholar 

  • Israeli, N., Goldenfeld, N.: On computational irreducibility and the predictability of complex physical systems. Phys. Rev. Lett. 92, 074105 (2004)

    Article  Google Scholar 

  • Jonas, J.: The Phenomenon of Life: Toward a Philosophical Biology. Harper & Row, New York (1966)

    Google Scholar 

  • Kant, I.: Critique of Judgment. Hackett, Indianapolis (1987 [1790])

    Google Scholar 

  • Kim, J.: Making sense of emergence. Philos. Stud. 95, 3–36 (1999)

    Article  Google Scholar 

  • Klee, R.: Microdeterminisms and concepts of emergence. Philos. Sci. 51, 44–63 (1984)

    Article  Google Scholar 

  • Kuorikoski, J., Lehtinen, A., Marchionni, C.: Robustness analysis disclaimer: please read the manual before use! Biol. Philos. 27, 891–902 (2012)

    Article  Google Scholar 

  • Langton, C.: Artificial life. In: Langton, C. (ed.) Artificial Life. SFI studies in the sciences of complexity, Proc. Vol. VI. Addison-Wesley, Redwood City (1989)

    Google Scholar 

  • Laughlin, R.: A Different Universe: Reinventing Physics from the Bottom Down. Basic Books, New York (2005)

    Google Scholar 

  • Laughlin, R.B., Pines, D., Schmalian, J., Stojkovi, B., Wolynes, P.: The middle way. Proc. Natl. Acad. Sci. U. S. A. 97(1), 32–37 (2000)

    Article  Google Scholar 

  • Levins, R.: The strategy of model building in population biology. In: Sober, E. (ed.) Conceptual Issues in Evolutionary Biology, 1st edn, pp. 18–27. MIT Press, Cambridge, MA (1966)

    Google Scholar 

  • Lewis, D.: Causation. J. Philos. 70, 556–567 (1973)

    Article  Google Scholar 

  • Lipton, P.: Inference to the Best Explanation. Routledge, London (1991)

    Book  Google Scholar 

  • Matthewson, J., Weisberg, M.: The structure of trade-offs in model building. Synthese 170(1), 169–190 (2009)

    Article  Google Scholar 

  • Mc Laughlin, B.: The rise and fall of British emergentism. In: Beckermann, A., Flohr, H., Kim, J. (eds.) Emergence or Reduction? de Gruyter, Berlin (1992)

    Google Scholar 

  • Nagel, K., Rasmussen, K.: Traffic at the edge of chaos. In: Brooks, R. (ed.) Artificial Life IV. MIT Press, Cambridge, MA (1994)

    Google Scholar 

  • Nagel, T.: What is it like to be a Bat? Philos. Rev. 83(4), 435450 (1974)

    Google Scholar 

  • O’Connor, T.: Emergent properties. Am. Philos. Q. 31, 91–104 (1994)

    Google Scholar 

  • Orzack, S.H., Sober, E.: A critical assessment of Levins’s the strategy of model building in population biology (1966). Q. Rev. Biol. 68, 533–546 (1993)

    Article  Google Scholar 

  • Piaget, J.: La construction du réel chez l’enfant. Delachaux et Niestlé, Paris (1937)

    Google Scholar 

  • Rasmussen, S., Baas, N., Mayer, B., Nilsson, M., Olesen, M.: Ansatz for dynamical hierarchies. Artif. Life 7(4), 329–353 (2002)

    Article  Google Scholar 

  • Roe, S.A.: Matter, Life, Generation. Eighteenth-Century Embryology and the Haller-Wolff Debate. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Salzberg, C., Antony, A., Sayama, H.: Genetic diversification and adaptation of self-replicators discovered in simple cellular automata. In: Proceedings of the Sixth International Conference on Humans and Computers (HC-2003), pp. 194–199. University of Aizu, Aizuwakamatsu (2003)

    Google Scholar 

  • Sayama, H.: Spontaneous evolution of self reproducing loops in cellular automata. In: Bar-Yam, Y., Minai, A.A. (eds.) Unifying Themes in Complex Systems Volume II: Proceedings of the Second International Conference on Complex Systems, pp. 363–374. Westview Press (1998)

    Google Scholar 

  • Schelling, T.: Models of segregation. Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  • Seager, W.: Emergence and efficacy. In: Erneling, C., Johnson, D. (eds.) The Mind as a Scientific Object Between Brain and Culture, pp. 176–192. Oxford University Press, Oxford (2005)

    Google Scholar 

  • Sellars, W.: Philosophy and the scientific image of man. In: Colodny, R. (ed.) Frontiers of Science and Philosophy, pp. 35–78. University of Pittsburgh Press, Pittsburgh (1962)

    Google Scholar 

  • Shalizi, C., Haslinger, R., Rouquier, J.B., Klinkner, C., Moore, C.: Automatic filters for the detection of coherent structures in spatiotemporal systems. ArXiv CG/0508001 (2006)

    Google Scholar 

  • Silberstein, M.: Reduction, emergence and explanation. In: Silberstein, M., Machamer, P. (eds.) Blackwell Guide to the Philosophy of Science, pp. 80–107. Blackwell, Oxford (2002)

    Google Scholar 

  • Tassier, T.: A model of fads, fashions and group formations. Complexity 9(5), 51–61 (2004)

    Article  Google Scholar 

  • Weisberg, M.: Robustness analysis. Philos. Sci. 73, 730–742 (2006)

    Article  Google Scholar 

  • Wilson, J.: Non-reductive physicalism and degrees of freedom. Br. J. Philos. Sci 61(2), 279–311 (2010a)

    Article  Google Scholar 

  • Wilson, R.: The third way of agent-based social simulation and a computational account of emergence. J. Artif. Soc. Soc. Simul 13(3), 8 (2010b). http://jasss.soc.surrey.ac.uk/13/3/8.html

    Google Scholar 

  • Wimsatt, W.: False models as means to truer theories. In: Nitecki, N., Hoffman, A. (eds.) Neutral Models in Biology, pp. 23–55. Oxford University Press, Oxford (1987)

    Google Scholar 

  • Wimsatt, W.: Aggregation: reductive heuristics for finding emergence. Philos. Sci. 64, S372–S384 (1997)

    Article  Google Scholar 

  • Wolfe, C., Normandin, S.: Vitalism and the Scientific Image in Post-Enlightenment Life Science, 1800–2010. Springer, Dordrecht (2013)

    Google Scholar 

  • Woodward, J.: Making Things Happen. Oxford University Press, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Huneman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huneman, P. (2016). Does Emergence Also Belong to the Scientific Image? Elements of an Alternative Theoretical Framework Towards an Objective Notion of Emergence. In: Redmond, J., Pombo Martins, O., Nepomuceno Fernández, Á. (eds) Epistemology, Knowledge and the Impact of Interaction. Logic, Epistemology, and the Unity of Science, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-26506-3_22

Download citation

Publish with us

Policies and ethics