Skip to main content

Faster Binary Curve Software: A Case Study

  • Conference paper
Secure IT Systems (NordSec 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9417))

Included in the following conference series:

  • 1192 Accesses

Abstract

For decades, elliptic curves over binary fields appear in numerous standards including those mandated by NIST, SECG, and ANSI X9.62. Many popular security protocols such as TLS explicitly support these named curves, along with implementations of those protocols such as OpenSSL and NSS. Over the past few years, research in improving the performance and/or security of these named curve implementations has pushed forward the state-of-the-art: e.g. projective lambda coordinates (Oliveira et al.) and commodity microprocessors featuring carryless multiplication instructions for native polynomial arithmetic (Intel, ARM, Qualcomm). This work aggregates some of these new techniques as well as classical ones to bring an existing library closer to the state-of-the art. Using OpenSSL as a case study to establish the practical impact of these techniques on real systems, results show significant performance improvements while at the same time adhering to the existing software architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Daoud, E., Mahmod, R., Rushdan, M., Kiliçman, A.: A new addition formula for elliptic curves over GF(2\({}^{\text{n}}\)). IEEE Trans. Computers 51(8), 972–975 (2002). http://doi.ieeecomputersociety.org/10.1109/TC.2002.1024743

    Article  Google Scholar 

  2. Avanzi, R., Brumley, B.B.: Faster 128-EEA3 and 128-EIA3 software. Cryptology ePrint Archive, Report 2013/428 (2013). https://eprint.iacr.org/2013/428

  3. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bluhm, M., Gueron, S.: Fast software implementation of binary elliptic curve cryptography. J. Cryptographic Engineering 5(3), 215–226 (2015). http://dx.doi.org/10.1007/s13389-015-0094-1

    Article  Google Scholar 

  5. Brumley, B.B.: Faster software for fast endomorphisms. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2015. LNCS, vol. 9064, pp. 127–140. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and elimination of an ecc-related software bug attack. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 171–186. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its Applications(Boca Raton). Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  9. Coron, J.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) [16], pp. 292–302. http://dx.doi.org/10.1007/3-540-48059-5_25

  10. Gueron, S., Krasnov, V.: Fast prime field elliptic-curve cryptography with 256-bit primes. J. Cryptographic Engineering 5(2), 141–151 (2015). http://dx.doi.org/10.1007/s13389-014-0090-x

    Article  Google Scholar 

  11. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography. Springer, New York (2004). Springer Professional Computing

    MATH  Google Scholar 

  12. IEEE: Standard specifications for public key cryptography. P1363 (1999)

    Google Scholar 

  13. Käsper, E.: Fast elliptic curve cryptography in OpenSSL. In: Danezis, G., Dietrich, S., Sako, K. (eds.) FC 2011 Workshops 2011. LNCS, vol. 7126, pp. 27–39. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. springer, Heidelberg (1992)

    Google Scholar 

  16. Koç, Ç.K., Paar, C. (eds.): CHES1999. LNCS, vol. 1717. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  17. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2\({}^{\text{m}}\)) without precomputation. In: Koç, Ç.K., Paar, C. [16], pp. 316–327. http://dx.doi.org/10.1007/3-540-48059-5_27

  18. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, p. 165. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. NIST: Digital signature standard (DSS). FIPS 186–4, National Institute of Standards and Technology (2013). http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

  21. Oliveira, T., López, J., Aranha, D.F., Rodríguez-Henríquez, F.: Two is the fastest prime: lambda coordinates for binary elliptic curves. J. Cryptographic Engineering 4(1), 3–17 (2014). http://dx.doi.org/10.1007/s13389-013-0069-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brumley, B.B. (2015). Faster Binary Curve Software: A Case Study. In: Buchegger, S., Dam, M. (eds) Secure IT Systems. NordSec 2015. Lecture Notes in Computer Science, vol 9417. Springer, Cham. https://doi.org/10.1007/978-3-319-26502-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26502-5_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26501-8

  • Online ISBN: 978-3-319-26502-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics