Skip to main content

Risk Assessment in the Presence of Uncertainty

  • Chapter
  • First Online:
Book cover Advances in Fuzzy Decision Making

Abstract

This chapter is devoted to a method which is able to process hybrid data, i.e., to jointly handle both randomness and imprecision. Random variables are described by probability distributions and imprecise values are modelled using possibility distributions. The main advantage of the proposed method is that it takes into account the dependencies between economic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This cost does not account for the values of used steel products manufactured in previous stages of the cycle as well as value of used raw materials, corrections are done in order to avoid multiple calculation of the same cost components during calculation of profit, according to formula (4.1).

References

  1. Choobineh, F., and A. Behrens. 1992. Use of intervals and possibility distribution in economic analysis. Journal of Operations Research Society 43(9): 907–918.

    Article  MATH  Google Scholar 

  2. Baudrit, C., D. Dubois, and D. Guyonet. 2006. Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment. IEEE Transaction on Fuzzy Systems 14(5): 593–607.

    Article  Google Scholar 

  3. Gupta, C.P. 1993. A note on the transformation of possibilistic information into probabilistic information for investment decisions. Fuzzy Sets and Systems 56(2): 175–182.

    Google Scholar 

  4. Kuchta, D. 2001. Miękka matematyka w zarza̧dzaniu: zastosowanie liczb przedziałowych i rozmytych w rachunkowości zarza̧dczej. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.

    Google Scholar 

  5. Pluta, W., and T. Jajuga. 1995. Inwestycje: Capital Budgeting—Budżetowanie Kapitałowe. Fundacja Rozwoju Rachunkowości w Polsce.

    Google Scholar 

  6. Dittmann, P. 2008. Prognozowanie w przedsiȩbiorstwie: metody i ich zastosowanie. Wolters Kluwer.

    Google Scholar 

  7. Kuchta, D. 2000. Fuzzy capital budgeting. Fuzzy Sets and Systems 111(3): 367–385.

    Article  MathSciNet  MATH  Google Scholar 

  8. Mohamed, S., and A.K. McCowan. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management 19(4): 231–241.

    Article  Google Scholar 

  9. Ferson, S. 1996. What Monte Carlo method cannot do. Human and Ecological Risk Assessment: An International Journal 2(4): 990–1007.

    Article  Google Scholar 

  10. Georgescu, I., and J. Kinnunen. 2011. Modeling the risk by credibility theory. In Proceedings of the 3rd international IEEE conference on advanced management science (ICAMS 2011), Kuala Lumpur, Malaysia, International proceedings of economics development and research, vol. 19, 15–19.

    Google Scholar 

  11. Chiu, C.-Y., and S.C. Park. 1994. Fuzzy cash flow analysis using present worth criterion. The Engineering Economist 39(2): 113–138.

    Article  Google Scholar 

  12. Rȩbiasz, B. 2013. Selection of efficient portfolios-probabilistic and fuzzy approach, comparative study. Computers and Industrial Engineering 64(4): 1019–1032.

    Article  Google Scholar 

  13. Rȩbiasz, B. 2007. Fuzziness and randomness in investment project risk appraisal. Computers and Operations Research 34(1): 199–210.

    Article  MATH  Google Scholar 

  14. Ferson, S., and L.R. Ginzburg. 1996. Difference method are needed to propagate ignorance and variability. Reliability Engineering and System Safety 54(2–3): 133–144.

    Article  Google Scholar 

  15. Cooper, J.A., S. Ferson, and L. Ginzburg. 1996. Hybrid processing of stochastic and subjective uncertainty data. Risk Analysis 16(6): 785–791.

    Article  Google Scholar 

  16. Ward, T.L. 1985. Discounted fuzzy cash flow analysis. In 1985 Fall Industrial engineering 476–481.

    Google Scholar 

  17. Buckley, J.J. 1992. Solving fuzzy equations in economics and finance. Fuzzy Sets and Systems 48(3): 289–296.

    Article  MathSciNet  MATH  Google Scholar 

  18. Calzi, M.L. 1990. Toward a general setting for the fuzzy mathematics of finance. Fuzzy Sets and Systems 35(3): 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  19. Esogbue, A.O., and W.E. Hearnes II. 1998. On replacement models via a fuzzy set theoretic framework. IEEE Transactions on Systems Manufacturing and Cybernetics—Part C: Applications and Reviews 28(4): 549–560.

    Google Scholar 

  20. Kahraman, C., D. Ruan, and E. Tolga. 2002. Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. Information Science 142(1–4): 57–76.

    Article  MATH  Google Scholar 

  21. Rȩbiasz, B., B. Gaweł, and I. Skalna. 2014. Capital budgeting of interdependent projects with fuzziness and randomness. In Information systems architecture and technology, ed. Zofia Wilimowska et al, 125–135.

    Google Scholar 

  22. Rȩbiasz, B., B. Gaweł, and I. Skalna. 2015. Fuzzy multi-attribute evaluation of investments. In Advances in ICT for business, industry and public sector: ABICT’13 (4th international workshop on Advances in business ICT), eds. Tomasz Pełech-Pilichowski Maria Mach-Król, and Celina M. Olszak, 141–156.

    Google Scholar 

  23. Rȩbiasz, B., B. Gawel, and I. Skalna. 2014. Hybrid framework for investment project portfolio selection. In Federated conference on computer science and information systems 1123–1228.

    Google Scholar 

  24. Smets, P. 1990. Constructing the pignistic probability function in a context of uncertainty. In Proceedings of the fifth annual conference on uncertainty in artificial intelligence, ed. Henrion M., E.D. Schachter, L.N. Kanal, and J.F. Lemmer. UAI’89, 29–39. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  25. Shafer, G. 1976. A mathematical theory of evidence. Princeton: Princeton University Press.

    MATH  Google Scholar 

  26. Guyonnet, D., B. Bourgine, D. Dubois, H. Fargier, B. Côme, and P.J. Chilès. 2003. Hybrid approach for addressing uncertainty in risk assessment. Journal of Environmental Engineering 129(1): 68–76.

    Article  Google Scholar 

  27. Kaufmann, A., and M.M. Gupta. 1985. Introduction to fuzzy arithmetic: Theory and application., Electrical-computer science and engineering series New York: van Nostrand Reinhold Company.

    MATH  Google Scholar 

  28. Puri, M.L., and D.A. Ralescu. 1985. The concept of normality for fuzzy random variables. Annals of Probability 13(4): 1371–1379.

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y.-K., and B. Liu. 2003. Fuzzy random variables: A scalar expected value operator. Fuzzy Optimization and Decision Making 2(2): 143–160.

    Article  MathSciNet  Google Scholar 

  30. Liu, Y.-K., and B. Liu. 2003. Expected value operator of random fuzzy variable and random fuzzy expected value models. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11(2): 195–215.

    Google Scholar 

  31. Liu, Y.-K., and B. Liu. 2002. Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems 10(4): 445–450.

    Article  Google Scholar 

  32. Zadeh, L.A. 1978. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1): 3–28.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Basiura .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basiura, . et al. (2015). Risk Assessment in the Presence of Uncertainty. In: Advances in Fuzzy Decision Making. Studies in Fuzziness and Soft Computing, vol 333. Springer, Cham. https://doi.org/10.1007/978-3-319-26494-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26494-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26492-9

  • Online ISBN: 978-3-319-26494-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics