Advertisement

Machine Intelligence and the Ethical Grammar of Computability

  • David LeslieEmail author
Chapter
Part of the Synthese Library book series (SYLI, volume 376)

Abstract

Since the publication of Alan Turing’s famous papers on “machine intelligence” over six decades ago, questions about whether complex mechanical systems can partake in intelligent cognitive processes have largely been answered under the analytical rubric of their capacity successfully to simulate symbol-mongering human behavior. While this focus on the mimetic potential of computers in response to the question “Can machines think?” has come to be accepted as one of the great bequests of Turing’s reflections on the nature of artificial intelligence, I argue in this paper that a closer look at Turing’s oeuvre reveals an especially informative tension between the pragmatic and normative insights, which enabled him in 1936 to formulate his pioneering version of the theory of mechanical computability, and his later attempt to argue for a simplistic notion of “machine intelligence” as an effectual imitation of the human mind. In fleshing out the source of this tension, I endeavor to show how the mimetic model of “thinking machines” that Turing eventually embraces is ultimately at cross-purposes with the normative-pragmatic insights by which he reached his original innovations in computability theory and combinatorial logic.

Keywords

Machine intelligence Effective calculability Church-turing thesis Turing test Computability Inexhaustibility Limitative theorems Metamathematics 

References

  1. Agamben, G. (2009). What is an aparatus? (D. Kishik & S. Pedatella, Trans.). Stanford: Stanford University Press.Google Scholar
  2. Apel, K.-O. (1998). Towards a transformation of philosophy (G. Adey & D. Frisby, Trans.). Milwaukee: Marquette University Press.Google Scholar
  3. Black, M. (1946). Critical thinking. New York: Prentice-Hall.Google Scholar
  4. Brandom, R. (1994). Making it explicit. Cambridge: Harvard University Press.Google Scholar
  5. Brandom, R. (2000). Articulating reasons. Cambridge/London: Harvard University Press.Google Scholar
  6. Brandom, R. (2009). Reason in philosophy. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  7. Church, A. (1937). Review of a. m. turing. on computable numbers, with an application to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1), 42–43.Google Scholar
  8. Dewey, J. (1960). The quest for certainty. New York: Penguin Books.Google Scholar
  9. Foucault, M. (1966/1994). The order of things. New York: Vintage Books.Google Scholar
  10. Gadamer, H. G. (1960/1992). Truth and method (D. Marshall & J. Weinsheimer, Trans.). New York: Crossroad.Google Scholar
  11. Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal turing machine: A half-century survey (pp. 55–111). Oxford/New York: Oxford University Press.Google Scholar
  12. Gödel, K. (1931/1965). On formally undecidable propositions of the principia mathematica and related systems. In M. Davis (Ed.), The undecidable (pp. 4–38). New York: Raven Press.Google Scholar
  13. Gödel, K. (1946/1965). Remarks before the Princeton bicentennial conference on problems in mathematics. In M. Davis (Ed.), The undecidable (pp. 84–87). New York: Raven Press.Google Scholar
  14. Gödel, K. (1951/1995). Unpublished philosophical essays (F. A. Rodriguez-Consuegra, Ed.). Basel/Boston: Birkhäuser.Google Scholar
  15. Gödel, K. (1986). Collected works i (S. Feferman, J. W. Dawson, S. C. Kleene, G. H. Moore, R. M. Solovay, & J. van Heijenoort, Eds.). Oxford: Clarendon Press.Google Scholar
  16. Goodman, N. (1960). The way the world is. The Review of Metaphysics, 14(1), 48–56.Google Scholar
  17. Habermas, J. (1992). Postmetaphysical thinking (W. Hohengarten, Trans.). Cambridge: MIT.Google Scholar
  18. Haugeland, J. (1998). Having thought. Cambridge: Harvard University Press.Google Scholar
  19. Hofstadter, D. (1979/1994). Gödel, Escher, Bach: An eternal golden braid. New York: Basic Books.Google Scholar
  20. Jaspers, K. (1953). The origin and goal of history (M. Bullock, Trans.). New Haven: Yale University Press.Google Scholar
  21. Kleene, S. C. (1952/1971). Introduction to metamathematics. Groningen: Wolters-Noordhoff.Google Scholar
  22. Kleene, S. C. (1987). Reflections on Church’s thesis. Notre Dame Journal of Formal Logic, 28(4), 490–498.CrossRefGoogle Scholar
  23. Kleene, S. C. (1988). Turing’s analysis of computability, and major applications of it. In R. Herken (Ed.), The universal turing machine: A half-century survey (pp. 17–54). Oxford/New York: Oxford University Press.Google Scholar
  24. Kripke, S. (2013). The Church turing ‘thesis’ as a special corollary. In J. Copeland, C. Posy, & O. Shagrir (Eds.), Computability: Turing, Gödel, Church, and beyond. Cambridge: MIT.Google Scholar
  25. Lewis, C. I. (1929). Mind and the world order. New York: Dover Publications.Google Scholar
  26. Murawski, R. (1999). Recursive functions and metamathematics. Dordrecht/Boston: Kluwer Academic.CrossRefGoogle Scholar
  27. Post, E. (1936/1965). Finite combinatory processes: Formulation i. In M. Davis (Ed.), The undecidable. Hewlett: Raven Press.Google Scholar
  28. Rorty, R. (1982). Consequences of pragmatism. Minneapolis: University of Minnesota Press.Google Scholar
  29. Searle, J. (1968). Austin on locutionary and illocutionary acts. The Philosophical Review, 77, 405–424.CrossRefGoogle Scholar
  30. Sellars, W. (1956/1997). Empiricism and philosophy of mind. Cambridge: Harvard University Press.Google Scholar
  31. Sieg, W. (1994). Mechanical procedures and mathematical experience. In A. George (Ed.), Mathematics and mind. New York: Oxford University Press.Google Scholar
  32. Sieg, W. (2002). Calculations by man and machine. In W. Sieg, R. Sommer, & C. Talcott (Eds.), Reflections on the foundations of mathematics (pp. 396–415). Urbana: Association for Symbolic Logic.Google Scholar
  33. Sieg, W. (2006). On mind and Turing’s machines. Natural Computing, 6(2), 187–205.CrossRefGoogle Scholar
  34. Turing, A. M. (1936/2004). On computable numbers, with an application to the Entscheidungsproblem. In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 58–90). Oxford: Clarendon Press.Google Scholar
  35. Turing, A. M. (1938/2004). Systems of logic based on ordinals. In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 146–204). Oxford: Clarendon Press.Google Scholar
  36. Turing, A. M. (1948/2004). Intelligent machinery. In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 395–432). Oxford: Clarendon Press.Google Scholar
  37. Turing, A. M. (1950/2004). Computing machinery and intelligence. In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 433–464). Oxford: Clarendon Press.Google Scholar
  38. Turing, A. M. (1951/2004). Can digital computers think? In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 476–486). Oxford: Clarendon Press.Google Scholar
  39. Turing, A. M. (1954/2004). Solvable and unsolvable problems. In B. J. Copeland (Ed.), The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life (pp. 576–596). Oxford: Clarendon Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations