Computation and Multiple Realizability

  • Marcin MiłkowskiEmail author
Part of the Synthese Library book series (SYLI, volume 376)


Multiple realizability (MR) is traditionally conceived of as the feature of computational systems, and has been used to argue for irreducibility of higher-level theories. I will show that there are several ways a computational system may be seen to display MR. These ways correspond to (at least) five ways one can conceive of the function of the physical computational system. However, they do not match common intuitions about MR. I show that MR is deeply interest-related, and for this reason, difficult to pin down exactly. I claim that MR is of little importance for defending computationalism, and argue that it should rather appeal to organizational invariance or substrate neutrality of computation, which are much more intuitive but cannot support strong antireductionist arguments.


Multiple realizability Functionalism Computationalism 



The work on this paper was financed by National Science Centre under the program OPUS, grant no. 2011/03/B/HS1/04563. The author wishes to thank Aaron Sloman for an extended discussion of his idea, to the audience at PT-AT 13, and to the anonymous referee of the previous version of the paper.


  1. Aizawa, K., & Gillett, C. (2009). The (multiple) realization of psychological and other properties in the sciences. Mind & Language, 24(2), 181–208. doi: 10.1111/j.1468-0017.2008.01359.x.CrossRefGoogle Scholar
  2. Bechtel, W. (2008). Mental mechanisms. New York: Routledge (Taylor & Francis Group).Google Scholar
  3. Bechtel, W., & Mundale, J. (1999). Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science, 66(2), 175–207.CrossRefGoogle Scholar
  4. Block, N. (1990). Can the mind change the world? In G. Boolos (Ed.), Meaning and method: Essays in honor of Hilary Putnam (pp. 137–170). Cambridge: Cambridge University Press.Google Scholar
  5. Chalmers, D. J. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12, 325–359.CrossRefGoogle Scholar
  6. Craver, C. F. (2007). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
  7. Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view. In P. Hunemann (Ed.), Functions: Selection and mechanisms (pp. 133–158). Dordrecht: Springer.CrossRefGoogle Scholar
  8. Cummins, R. (1975). Functional analysis. The Journal of Philosophy, 72(20), 741–765.CrossRefGoogle Scholar
  9. Davies, P. S. (2001). Norms of nature: Naturalism and the nature of functions. Cambridge: MIT Press.Google Scholar
  10. Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster.Google Scholar
  11. Fodor, J. A. (1968). The appeal to tacit knowledge in psychological explanation. The Journal of Philosophy, 65(20), 627–640.CrossRefGoogle Scholar
  12. Fodor, J. A. (1974). Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28(2), 97–115. doi: 10.1007/BF00485230.CrossRefGoogle Scholar
  13. Fresco, N. (2014). Physical computation and cognitive science. Berlin/Heidelberg: Springer. doi: 10.1007/978-3-642-41375-9.CrossRefGoogle Scholar
  14. Gillett, C. (2002). The dimensions of realization: A critique of the standard view. Analysis, 62(4), 316–323.CrossRefGoogle Scholar
  15. Gillett, C. (2011). Multiply realizing scientific properties and their instances. Philosophical Psychology, 24(6), 1–12. doi: 10.1080/09515089.2011.559625.CrossRefGoogle Scholar
  16. Glymour, C. (1994). On the methods of cognitive neuropsychology. The British Journal for the Philosophy of Science, 45(3), 815–835. doi: 10.1093/bjps/45.3.815.CrossRefGoogle Scholar
  17. Haimovici, S. (2013). A problem for the mechanistic account of computation. Journal of Cognitive Science, 14(2), 151–181.CrossRefGoogle Scholar
  18. IBM Archives: 709 Data Processing System. (2003, January 23). Retrieved January 11, 2014, from
  19. IBM Archives: 7090 Data Processing System. (2003, January 23). Retrieved January 11, 2014, from
  20. Keeley, B. L. (2000). Shocking lessons from electric fish: The theory and practice of multiple realization. Philosophy of Science, 67(3), 444–465.CrossRefGoogle Scholar
  21. Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261. doi: 10.1086/670300.CrossRefGoogle Scholar
  22. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.CrossRefGoogle Scholar
  23. Malcolm, G. (1996). Behavioural equivalence, bisimulation, and minimal realisation. In Recent trends in data type specification (pp. 359–378). Berlin/Heidelberg: Springer. doi: 10.1007/3-540-61629-2_53.CrossRefGoogle Scholar
  24. Meyer, D. E., Osman, A. M., Irwin, D. E., & Yantis, S. (1988). Modern mental chronometry. Biological Psychology, 26(1–3), 3–67. doi: 10.1016/0301-0511(88)90013-0.CrossRefGoogle Scholar
  25. Miłkowski, M. (2011). Beyond formal structure: A mechanistic perspective on computation and implementation. Journal of Cognitive Science, 12(4), 359–379.Google Scholar
  26. Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.Google Scholar
  27. Miłkowski, M. (2014). Computational mechanisms and models of computation. Philosophia Scientiæ, 18(3), 215–228.Google Scholar
  28. Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526. doi: 10.1086/522851.CrossRefGoogle Scholar
  29. Piccinini, G. (2010). Computation in physical systems. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Retrieved January 11, 2014 from
  30. Polger, T. W. (2004). Natural minds. Cambridge, MA: MIT Press.Google Scholar
  31. Polger, T. W. (2008). Evaluating the evidence for multiple realization. Synthese, 167(3), 457–472. doi: 10.1007/s11229-008-9386-7.CrossRefGoogle Scholar
  32. Polger, T. W., & Shapiro, L. A. (2008). Understanding the dimensions of realization. Journal of Philosophy, 105, 213–222.CrossRefGoogle Scholar
  33. Posner, M. I. (2005). Timing the brain: Mental chronometry as a tool in neuroscience. PLoS Biology, 3(2), e51. doi: 10.1371/journal.pbio.0030051.CrossRefGoogle Scholar
  34. Price, C. (2001). Functions in mind: A theory of intentional content. Oxford/New York: Clarendon.CrossRefGoogle Scholar
  35. Putnam, H. (1975). Philosophy and our mental life. In Mind, language and reality: Philosophical papers (Vol. 1, pp. 291–304).Google Scholar
  36. Shagrir, O. (1998). Multiple realization, computation and the taxonomy of psychological states. Synthese, 114(3), 445–461. doi: 10.1023/A:1005072701509.CrossRefGoogle Scholar
  37. Shapiro, L. A. (2000). Multiple realizations. The Journal of Philosophy, 97(12), 635–654.CrossRefGoogle Scholar
  38. Shapiro, L. A. (2004). The mind incarnate. Cambridge, MA: MIT Press.Google Scholar
  39. Shapiro, L. A. (2008). How to test for multiple realization. Philosophy of Science, 75(5), 514–525. doi: 10.1086/594503.CrossRefGoogle Scholar
  40. Sober, E. (1999). The multiple realizability argument against reductionism. Philosophy of Science, 66(4), 542–564.CrossRefGoogle Scholar
  41. Wilson, R. A., & Craver, C. F. (2007). Realization: Metaphysical and scientific perspectives. In P. Thagard (Ed.), Philosophy of psychology and cognitive science (pp. 81–104). Amsterdam: North Holland. doi:10.1016/B978-044451540-7/50020-7.Google Scholar
  42. Wimsatt, W. C. (2002). Functional organization, analogy, and inference. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 173–221). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Philosophy and SociologyPolish Academy of SciencesWarszawaPoland

Personalised recommendations