Why Emotions Do Not Solve the Frame Problem

  • Madeleine RansomEmail author
Part of the Synthese Library book series (SYLI, volume 376)


Attempts to engineer a generally intelligent artificial agent have yet to meet with success, largely due to the (intercontext) frame problem. Given that humans are able to solve this problem on a daily basis, one strategy for making progress in AI is to look for disanalogies between humans and computers that might account for the difference. It has become popular to appeal to the emotions as the means by which the frame problem is solved in human agents. The purpose of this paper is to evaluate the tenability of this proposal, with a primary focus on Dylan Evans’ search hypothesis and Antonio Damasio’s somatic marker hypothesis. I will argue that while the emotions plausibly help solve the intracontext frame problem, they do not function to solve or help solve the intercontext frame problem, as they are themselves subject to contextual variability.


Frame problem Emotions Search hypothesis Somatic marker hypothesis Context 


  1. Barrett, L. F. (2012). Emotions are real. American Psychological Association, 12(3), 413–429.Google Scholar
  2. Carruthers, P. (2007). Simple heuristics meet massive modularity. In P. Carruthers, S. Laurence, & S. Stich (Eds.), The innate mind: Volume 2: Culture and cognition (pp. 181–198). Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Colombetti, G. (2005). Appraising valence. Journal of Consciousness Studies, 12(8–10), 103–126.Google Scholar
  4. Damasio, A. (1994). Decartes’ error. New York: Grosset/Putnam.Google Scholar
  5. Darwin, C. (1872/2009). The expression of the emotions in man and animals. New York: Penguin Classic.Google Scholar
  6. De Sousa, R. (1979). The rationality of emotions. Dialogue, 18(1), 41–63.CrossRefGoogle Scholar
  7. De Sousa, R. (1987). The rationality of emotion. Cambridge, MA: MIT Press.Google Scholar
  8. Dennett, D. (1978). Brainstorms. Cambridge, MA: MIT Press.Google Scholar
  9. Dennett, D. (1998). Cognitive wheels: The frame problem of AI. In Brainchildren (pp. 181–205). New York: Penguin.Google Scholar
  10. Dreyfus, H. L. (1992). What computers still can’t do. Cambridge, MA: MIT Press.Google Scholar
  11. Evans, D. (2004). The search hypothesis of emotion. In D. Evans & P. Cruse (Eds.), Emotion, evolution, and rationality (pp. 179–192). Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Fetzer, J. H. (1991). The frame problem: Artificial intelligence meets David Hume. In K. M. Ford & P. J. Hayes (Eds.), Reasoning agents in a dynamic world: The frame problem. Oxford: JAI Press.Google Scholar
  13. Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  14. Ford, K. M., & Pylyshyn, Z. W. (Eds.). (1996). The Robot’s dilemma revisited: The frame problem in artificial intelligence. Norwood: Ablex.Google Scholar
  15. Gabbay, D., & Woods, J. (2003). Agenda relevance: A study in formal pragmatics. New York: North-Holland.CrossRefGoogle Scholar
  16. Hayes, P. J. (1991). Artificial intelligence meets David Hume: A reply to Fetzer. In K. M. Ford & P. J. Hayes (Eds.), Reasoning agents in a dynamic world: The frame problem. Oxford: JAI Press.Google Scholar
  17. Hurley, M., Dennett, D., & Adams, R. (2011). Inside jokes: Using humor to reverse engineer the mind. Cambridge, MA: MIT Press.Google Scholar
  18. Ketelaar, T., & Todd, P. M. (2001). Framing our thoughts: Ecological rationality as evolutionary psychology’s answer to the frame problem. In P. Davies & H. R. Holcomb (Eds.), Conceptual challenges in evolutionary psychology: Innovative research strategies (pp. 179–211). Dordrecht: Kluwer Publishers.CrossRefGoogle Scholar
  19. Linquist, S., & Bartol, J. (2013). Two myths about somatic markers. The British Journal for the Philosophy of Science, 64(3), 455–484.CrossRefGoogle Scholar
  20. McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In D. Michie & B. Meltzer (Eds.), Machine intelligence 4 (pp. 463–504). Edinburgh: Edinburgh University Press.Google Scholar
  21. Megill, J. L., & Cogburn, J. (2005). Easy’s Gettin’ harder all the time: The computational theory and affective states. Ratio, 18(3), 306–316.CrossRefGoogle Scholar
  22. Morton, A. (2013). Emotion and imagination. Cambridge, MA: Polity Press.Google Scholar
  23. Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the Association for Computing Machinery, 19, 113–126.CrossRefGoogle Scholar
  24. Shanahan, M. P. (1997). Solving the frame problem: A mathematical investigation of the common sense law of inertia. Cambridge, MA: MIT Press.Google Scholar
  25. Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological Review, 74(1), 29–39.CrossRefGoogle Scholar
  26. Wheeler, M. (2008). Cognition in context: Phenomenology, situated robotics and the frame problem. International Journal of Philosophical Studies, 16(3), 323–349.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations