Advertisement

General Homeostasis, Passive Life, and the Challenge to Autonomy

  • Stefano FranchiEmail author
Chapter
Part of the Synthese Library book series (SYLI, volume 376)

Abstract

The paper argues that the conception of life as generalized homeostasis developed by W.R. Ashby in Design for a Brain and his other writings is orthogonal to the traditional distinction between autonomy and heteronomy that underlies much recent work in cellular biology, evolutionary robotics, ALife, and general AI. The distinction is well-entrenched in the Western philosophical canon but it fails to do justice to Ashby’s conception of life. We can assess the philosophical and technical viability of the general homeostasis thesis Ashby advocated, the paper argues, through the construction of virtual cognitive agents (i.e. simulated robots in a physically plausible environment) that replicate the architecture of Ashby’s original homeostat through a Ctrnn-like network architecture, whose outline implementation is then discussed.

Keywords

Homeostasis W.R. Ashby Life Autonomy Heteronomy 

References

  1. Aristotle. (1984). The complete works of Aristotle. Princeton: Princeton University Press.Google Scholar
  2. Ashby, W. R. (1952a). Can a mechanical chess-player outplay its designer? The British Journal for the Philosophy of Science, III(9), 44–57.Google Scholar
  3. Ashby, W. R. (1952b). Design for a brain (1st ed.). New York: Wiley.Google Scholar
  4. Ashby, W. R. (1954). The application of cybernetics to psychiatry. The British Journal of Psychiatry, 100(418), 114–214.CrossRefGoogle Scholar
  5. Ashby, W. R. (1956). An introduction to cybernetics. London: Chapman and Hall.CrossRefGoogle Scholar
  6. Ashby, W. R. (1960). Design for a brain (2nd ed.). New York: Wiley.Google Scholar
  7. Barandiaran, X., & Ruiz-Mirazo, K. (2008). Modelling autonomy: Simulating the essence of life and cognition. Biosystems, 91(2), 295–304.CrossRefGoogle Scholar
  8. Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior, 3(4), 471–511.CrossRefGoogle Scholar
  9. Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. J. Mataric, J. A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 419–429). Cambridge: MIT.Google Scholar
  10. Bekey, G. A. (2005). Autonomous robots: From biological inspiration to implementation and control. Cambridge: MIT.Google Scholar
  11. Berg, H. C. (2004). E. coli in motion. New York: Springer.CrossRefGoogle Scholar
  12. Bernard, C. (1966[1878–1879]). Leçons sur les phénomènes de la vie communs aux animaux et aux vegetaux. Paris: Vrin.Google Scholar
  13. Bernard, C. (1974). Lectures on the phenomena of life common to animals and plants. Springfield: Charles C. Thomas.Google Scholar
  14. Braitenberg, V. (1984). Vehicles. Experiments in synthetic psychology. Cambridge: MIT.Google Scholar
  15. Cannon, W. (1929). Organization for physiological homeostasis. Physiological Reviews, 9, 399–431.Google Scholar
  16. Cannon, W. (1939[1932]). The wisdom of the body (2nd ed.). New York: W.W. Norton.Google Scholar
  17. Capehart, B. L., & Terry, R. (1968). Digital simulation of homeostat modified to show memory and learning. IEEE Transactions on Systems Science and Cybernetics, SSC4(3), 188.CrossRefGoogle Scholar
  18. Descartes, R. (1988). The passions of the soul (Vol. 1, pp. 325–404). Cambridge: Cambridge University Press.Google Scholar
  19. Di Paolo, E. (2000). Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In J. A. Meyer, A. Berthoz, D. Floreano, H. L. Roitblat, & S. W. Wilson (Eds.), From Animals to Animats 6: Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior (pp. 440–449). Cambridge: MIT.Google Scholar
  20. Di Paolo, E. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4(4), 429–452.CrossRefGoogle Scholar
  21. Di Paolo, E., Rohde, M., & Jaegher, H. D. (2010). Horizons for the enactive mind: Values, social interaction, and play. In J. Stewart, O. Gapenne, & E. Di Paolo (Eds.), Enaction: Towards a new paradigm for cognitive science. Cambridge: MIT.Google Scholar
  22. Egbert, M. D., Barandiaran, X. E., & Di Paolo, E. A. (2010). A minimal model of metabolism-based chemotaxis. PLoS Computational Biology, 6(12), e1001004.CrossRefGoogle Scholar
  23. Franchi, S. (2011a). Jammed machines and contingently fit animals: Psychoanalysis’s biological paradox. French Literature Series, 38, 213–256.Google Scholar
  24. Franchi, S. (2011b). Life, death, and resurrection of the homeostat. In S. Franchi & F. Bianchini (Eds.), The search for a theory of cognition: Early mechanisms and new ideas (pp. 3–51) Amsterdam: Rodopi.Google Scholar
  25. Franchi, S. (2013). Homeostats for the 21st century? Lessons learned from simulating Ashby simulating the brain. Constructivist Foundations, 8(3), 501–532, with open peer commentaries and author’s responseGoogle Scholar
  26. Haldane, J. S. (1917). Organism and environment as illustrated by the physiology of breathing. New Haven: Yale University Press.CrossRefGoogle Scholar
  27. Haldane, J. S. (1922). Respiration. New Haven: Yale University Press.CrossRefGoogle Scholar
  28. Haroules, G. G., & Haire, P. F. (1960). Jenny: An improved homeostat (Tech. Rep. AFCRC-TN-60-379), Air Force Cambridge Research Center.Google Scholar
  29. Henderson, L. J. (1928). Blood: A study in general physiology. New Haven: Yale University Press.Google Scholar
  30. Husbands, P., & Holland, O. (2008). The ratio club: A hub of british cybernetics. In P. Husbands, O. Holland, & M. Wheeler (Eds.), The mechanical mind in history (pp. 91–148). Cambridge: MIT.CrossRefGoogle Scholar
  31. Ikegami, T., & Suzuki, K. (2008). From a homeostatic to a homeodynamic self. Biosystems, 91(2), 388–400.CrossRefGoogle Scholar
  32. Izquierdo, E. J., Aguilera, M., & Beer, R. D. (2013). Analysis of ultrastability in small dynamical recurrent neural networks. In Advances in Artificial Life, ECAL 2013. Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems (pp. 51–58). Cambridge: MIT.Google Scholar
  33. Jonas, H. (1966). The phenomenon of life: Towards a philosophical biology. New York: Harper and Row.Google Scholar
  34. Jonas, H. (1984). The imperative of responsibility. Foundations of an ethics for the technological age. Chicago: The University of Chicago Press.Google Scholar
  35. Jonas, H. (1996). Evolution and freedom: On the continuity among life-forms. In Mortality and morality. A search for the good after Auschwitz (pp. 59–74). Evanston: Northwestern University Press.Google Scholar
  36. Kant, I. (1952). The critique of judgment. Oxford: Oxford University Press.Google Scholar
  37. Kant, I. (1993). Opus postumum. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Kant, I. (1999). Practical philosophy. Cambridge: Cambridge University Press.Google Scholar
  39. Malgrem, H. (2013). From Fechner, via Freud and Pavlov, to Ashby. Constructivist Foundations, 9(1), 104–105.Google Scholar
  40. Michel, O. (2004). Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems, 1(1), 39–42.Google Scholar
  41. Pfeifer, R., & Bongard, J. (2007). How the body shapes the way we think: A new view of intelligence (A Bradford book). Cambridge: MIT.Google Scholar
  42. Pickering, A. (2010). The cybernetic brain: Sketches of another future. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  43. Plato. (1997). Complete works. Indianapolis: Hackett.Google Scholar
  44. Starling, E. H. (1923). The wisdom of the body. The Harveian oration, delivered before the royal college of physicians of London on St. Luke’s day, 1923. British Medical Journal, 2(3272), 685–690.Google Scholar
  45. Varela, F. J. (1979). Principles of biological autonomy. New York: North-Holland.Google Scholar
  46. von Foerster, H., Mead, M., & Teuber, H. L. (Eds.). (1953). Cybernetics. Circular Causal and Feedback Mechanisms in Biological and Social Systems, Josiah Macy, Jr. Foundation, New York, transactions of the Ninth Conference, New York, March 20–21, 1952.Google Scholar
  47. Walter, W. G. (1961). The living brain. Harmondsworth: Penguin Books.Google Scholar
  48. Weber, A., & Varela, F. J. (2002). Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1(2), 97–125.CrossRefGoogle Scholar
  49. Wilkins, M. G. (1968). A new homeostat (Tech. Rep. 8.3, bcl), Biological Computer Laboratory, University of Illinois at Urbana-Champaign.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations