The Anticipatory Brain: Two Approaches

  • Mark H. BickhardEmail author
Part of the Synthese Library book series (SYLI, volume 376)


It is becoming increasingly accepted that some form of anticipation is central to the functioning of the brain. But modeling such anticipation has been in several forms concerning what is anticipated, whether and how such ‘anticipation’ can be normative in the sense of possibly being wrong, the nature of the anticipatory processes and how they are realized in the brain, etc. Here I outline two such approaches – the Predictive Brain approach and the Interactivist approach – and undertake a critical comparison and contrast.


Predictive brain Interactivism Free energy Anticipatory brain Brain models 


  1. Adams, R. A., Shipp, S., & Friston, K. J. (2012). Predictions not commands: Active inference in the motor system. Brain Structure and Function. doi: 10.1007/s00429-012-0475-5.
  2. Agnati, L. F., Bjelke, B., & Fuxe, K. (1992). Volume transmission in the brain. American Scientist, 80(4), 362–373.Google Scholar
  3. Agnati, L. F., Fuxe, K., Nicholson, C., & Syková, E. (2000). Volume transmission revisited (Progress in brain research, Vol. 125). Amsterdam: Elsevier.Google Scholar
  4. Allen, J. W. P., & Bickhard, M. H. (2013a). Stepping off the pendulum: Why only an action-based approach can transcend the nativist-empiricist debate. Cognitive Development, 28, 96–133.CrossRefGoogle Scholar
  5. Allen, J. W. P., & Bickhard, M. H. (2013b). The pendulum still swings. Cognitive Development, 28, 164–174.CrossRefGoogle Scholar
  6. Bickhard, M. H. (1973). A model of developmental and psychological processes. Ph.D. Dissertation, University of Chicago.Google Scholar
  7. Bickhard, M. H. (1980a). A model of developmental and psychological processes. Genetic Psychology Monographs, 102, 61–116.Google Scholar
  8. Bickhard, M. H. (1980b). Cognition, convention, and communication. New York: Praeger Publishers.Google Scholar
  9. Bickhard, M. H. (1993). Representational content in humans and machines. Journal of Experimental & Theoretical Artificial Intelligence, 5, 285–333.CrossRefGoogle Scholar
  10. Bickhard, M. H. (1997). Cognitive representation in the brain. In R. Dulbecco (Ed.), Encyclopedia of human biology (2nd ed., pp. 865–876). San Diego: Academic.Google Scholar
  11. Bickhard, M. H. (2000). Motivation and emotion: An interactive process model. In R. D. Ellis & N. Newton (Eds.), The caldron of consciousness (pp. 161–178). Amsterdam/Philadelphia: J. Benjamins.CrossRefGoogle Scholar
  12. Bickhard, M. H. (2006). Developmental normativity and normative development. In L. Smith & J. Voneche (Eds.), Norms in human development (pp. 57–76). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Bickhard, M. H. (2008, May 22–23). The microgenetic dynamics of cortical attractor landscapes. Workshop on Dynamics in and of Attractor Landscapes, Parmenides Foundation, Isola d’Elba, Italy.Google Scholar
  14. Bickhard, M. H. (2009a). The interactivist model. Synthese, 166(3), 547–591.CrossRefGoogle Scholar
  15. Bickhard, M. H. (2009b). Interactivism. In J. Symons & P. Calvo (Eds.), The routledge companion to philosophy of psychology (pp. 346–359). London: Routledge.Google Scholar
  16. Bickhard, M. H. (2009c). The biological foundations of cognitive science. New Ideas in Psychology, 27, 75–84.CrossRefGoogle Scholar
  17. Bickhard, M. H. (2015a). Toward a model of functional brain processes I: Central nervous system functional micro-architecture. Axiomathes. doi: 10.1007/s10516-015-9275-x.Google Scholar
  18. Bickhard, M. H. (2015b). Toward a model of functional brain processes II: Central nervous system functional macro-architecture. Axiomathes. doi: 10.1007/s10516-015-9276-9.Google Scholar
  19. Bickhard, M. H. (in preparation). The whole person: Toward a naturalism of persons – Contributions to an ontological psychology.Google Scholar
  20. Bickhard, M. H., & Campbell, R. L. (1996). Topologies of learning and development. New Ideas in Psychology, 14(2), 111–156.CrossRefGoogle Scholar
  21. Bickhard, M. H., & Campbell, D. T. (2003). Variations in variation and selection: The ubiquity of the variation-and-selective retention ratchet in emergent organizational complexity. Foundations of Science, 8(3), 215–282.CrossRefGoogle Scholar
  22. Bickhard, M. H., & Richie, D. M. (1983). On the nature of representation: A case study of James Gibson’s theory of perception. New York: Praeger Publishers.Google Scholar
  23. Bickhard, M. H., & Terveen, L. (1995). Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Amsterdam: Elsevier Scientific.Google Scholar
  24. Block, N., & Siegel, S. (2013). Attention and perceptual adaptation. Behavioral and Brain Sciences, 36, 205–206.CrossRefGoogle Scholar
  25. Brann, D. W., Ganapathy, K. B., Lamar, C. A., & Mahesh, V. B. (1997). Gaseous transmitters and neuroendocrine regulation. Neuroendocrinology, 65, 385–395.CrossRefGoogle Scholar
  26. Buisson, J.-C. (2004). A rhythm recognition computer program to advocate interactivist perception. Cognitive Science, 28(1), 75–87.CrossRefGoogle Scholar
  27. Bullock, T. H. (1981). Spikeless neurones: Where do we go from here? In A. Roberts & B. M. H. Bush (Eds.), Neurones without impulses (pp. 269–284). Cambridge: Cambridge University Press.Google Scholar
  28. Bushong, E. A., Martone, M. E., & Ellisman, M. H. (2004). Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. International Journal of Developmental Neuroscience, 2(2), 73–86.CrossRefGoogle Scholar
  29. Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl Popper (pp. 413–463). LaSalle: Open Court.Google Scholar
  30. Carlson, N. R. (2013). Physiology of behavior (11th ed.). Upper Saddle River: Pearson.Google Scholar
  31. Chvátal, A., & Syková, E. (2000). Glial influence on neuronal signaling. In L. F. Agnati, K. Fuxe, C. Nicholson, & E. Syková (Eds.), Volume transmission revisited (Progress in brain research, Vol. 125, pp. 199–216). Amsterdam: Elsevier.CrossRefGoogle Scholar
  32. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–253.CrossRefGoogle Scholar
  33. Di Paolo, E. A. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4(4), 429–452.CrossRefGoogle Scholar
  34. Dowling, J. E. (1992). Neurons and networks. Cambridge, MA: Harvard University Press.Google Scholar
  35. Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex? Neural Networks, 12, 961–974.CrossRefGoogle Scholar
  36. Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15, 495–506.CrossRefGoogle Scholar
  37. Fodor, J. A., & Pylyshyn, Z. (1981). How direct is visual perception?: Some reflections on Gibson’s ecological approach. Cognition, 9, 139–196.CrossRefGoogle Scholar
  38. Freeman, W. J. (1995). Societies of brains. Mahwah: Erlbaum.Google Scholar
  39. Freeman, W. J. (2000a). How brains make up their minds. New York: Columbia.Google Scholar
  40. Freeman, W. J. (2000b). Mesoscopic brain dynamics. London: Springer.CrossRefGoogle Scholar
  41. Freeman, W. J. (2005). NDN, volume transmission, and self-organization in brain dynamics. Journal of Integrative Neuroscience, 4(4), 407–421.CrossRefGoogle Scholar
  42. Freeman, W. J., & Barrie, J. M. (1994). Chaotic oscillations and the genesis of meaning in cerebral cortex. In G. Buzsaki, R. Llinas, W. Singer, A. Berthoz, & Y. Christen (Eds.), Temporal coding in the brain (pp. 13–37). Berlin: Springer.CrossRefGoogle Scholar
  43. Freeman, W. J., Livi, R., Obinata, M., & Vitiello, G. (2012). Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. International Journal of Modern Physics B, 26(6), 29 p.Google Scholar
  44. Friston, K. J. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211. doi: 10.1371/journal.pcbi.1000211.CrossRefGoogle Scholar
  45. Friston, K. J. (2012). A free energy principle for biological systems. Entropy, 14, 2100–2121. doi: 10.3390/e14112100.CrossRefGoogle Scholar
  46. Friston, K. (2013). Active inference and free energy. Behavioral and Brain Sciences, 36, J.212–J.213.CrossRefGoogle Scholar
  47. Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159, 417–458.CrossRefGoogle Scholar
  48. Friston, K. J., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE, 4(7), e6421. doi: 10.1371/journal.pone.0006421.CrossRefGoogle Scholar
  49. Friston, K. J., Adams, R. A., Perrinet, L., & Breakspear, M. (2012a). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3, 1–20.Google Scholar
  50. Friston, K. J., Samothrakis, S., & Montague, R. (2012b). Active inference and agency: Optimal control without cost functions. Biological Cybernetics. doi: 10.1007/s00422-012-0512-8.
  51. Fuxe, K., & Agnati, L. F. (1991). Two principal modes of electrochemical communication in the brain: Volume versus wiring transmission. In K. Fuxe & L. F. Agnati (Eds.), Volume transmission in the brain: Novel mechanisms for neural transmission (pp. 1–9). New York: Raven.Google Scholar
  52. Gentner, D., & Jeziorski, M. (1993). The shift from metaphor to analogy in western science. In A. Ortony (Ed.), Metaphor and thought (2nd ed., pp. 447–480). New York: Cambridge University Press.CrossRefGoogle Scholar
  53. Gentner, D., & Rattermann, M. J. (1991). Language and the career of similarity. In S. A. Gelman & J. P. Byrnes (Eds.), Perspectives on language and thought: Interrelations in development (pp. 225–277). London: Cambridge University Press.CrossRefGoogle Scholar
  54. Gershman, S. J., & Daw, N. D. (2012). Perception, action, and utility: The tangled skein. In M. I. Rabinovich, K. J. Friston, & P. Verona (Eds.), Principles of brain dynamics: Global state interactions (pp. 293–312). Cambridge, MA: MIT.Google Scholar
  55. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  56. Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing (pp. 67–82). Hillsdale: Erlbaum.Google Scholar
  57. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  58. Gross, H.-M., Heinze, A., Seiler, T., & Stephan, V. (1999). Generative character of perception: A neural architecture for sensorimotor anticipation. Neural Networks, 12, 1101–1129.CrossRefGoogle Scholar
  59. Haag, J., & Borst, A. (1998). Active membrane properties and signal encoding in graded potential neurons. The Journal of Neuroscience, 18(19), 7972–7986.Google Scholar
  60. Hall, Z. W. (1992). Molecular neurobiology. Sunderland: Sinauer.Google Scholar
  61. Haugeland, J. (1998). Having thought. Cambridge, MA: Harvard U. Press.Google Scholar
  62. Hertz, L., & Zielker, H. R. (2004). Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends in Neurosciences, 27(12), 735–743.CrossRefGoogle Scholar
  63. Izhikevich, E. M. (2001). Resonate and fire neurons. Neural Networks, 14, 883–894.CrossRefGoogle Scholar
  64. Izhikevich, E. M. (2002). Resonance and selective communication via bursts in neurons. Biosystems, 67, 95–102.CrossRefGoogle Scholar
  65. Izhikevich, E. M. (2007). Dynamical systems in neuroscience. Cambridge, MA: MIT.Google Scholar
  66. Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209. doi: 10.1371/journal.pcbi.1000209.CrossRefGoogle Scholar
  67. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition. New York: Springer.CrossRefGoogle Scholar
  68. MacKay, D. M. (1956). The epistemological problem for automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 235–251). Princeton: Princeton University Press.Google Scholar
  69. MacKay, D. M. (1969). Information, mechanism and meaning. Cambridge, MA: MIT Press.Google Scholar
  70. Marder, E. (2012). Neuromodulation of neuronal circuits: Back to the future. Neuron, 76, 1–11.CrossRefGoogle Scholar
  71. Marder, E., & Thirumalai, V. (2002). Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15, 479–493.CrossRefGoogle Scholar
  72. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition. Dordrecht: Reidel.CrossRefGoogle Scholar
  73. McDermott, D. (1981). Artificial intelligence meets natural stupidity. In J. Haugeland (Ed.), Mind design (pp. 143–160). Cambridge, MA: MIT Press.Google Scholar
  74. Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100, 254–278.CrossRefGoogle Scholar
  75. Nauta, W. J. H., & Feirtag, M. (1986). Fundamental neuroanatomy. San Francisco: Freeman.Google Scholar
  76. Nedergaard, M., Ransom, B., & Goldman, S. A. (2003). New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 26(10), 523–530.CrossRefGoogle Scholar
  77. Neisser, U. (1967). Cognitive psychology. New York: Appleton.Google Scholar
  78. Newman, E. A. (2003). New roles for astrocytes: Regulation of synaptic transmission. Trends in Neurosciences, 26(10), 536–542.CrossRefGoogle Scholar
  79. Nieuwenhuys, R. (2001). Neocortical macrocircuits. In G. Roth & M. F. Wullimann (Eds.), Brain evolution and cognition (pp. 185–204). New York: Wiley.Google Scholar
  80. Perea, G., & Araque, A. (2007). Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 317, 1083–1086.CrossRefGoogle Scholar
  81. Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179–225.CrossRefGoogle Scholar
  82. Pezzulo, G., Candidi, M., Dindo, H., & Barca, L. (2013). Action simulation in the human brain: Twelve questions. New Ideas in Psychology. 10.1016/j.newideapsych.2013.01.004
  83. Powers, W. T. (1973). Behavior: The control of perception. Chicago: Aldine.Google Scholar
  84. Ransom, B., Behar, T., & Nedergaard, M. (2003). New roles for astrocytes (stars at last). Trends in Neurosciences, 26(10), 520–522.CrossRefGoogle Scholar
  85. Roberts, A., & Bush, B. M. H. (Eds.). (1981). Neurones without impulses. Cambridge: Cambridge University Press.Google Scholar
  86. Roesch, E. B., Nasuto, S. J., & Bishop, J. M. (2012). Emotion and anticipation in an enactive framework for cognition (response to Andy Clark). Frontiers in Psychology, 3, 1–2.CrossRefGoogle Scholar
  87. Slezak, M., & Pfreiger, F. W. (2003). New roles for astrocytes: Regulation of CNS synaptogenesis. Trends in Neurosciences, 26(10), 531–535.CrossRefGoogle Scholar
  88. Sokolov, E. M. (1960). Neuronal models and the orienting reflex. In M. Brazier (Ed.), The central nervous system and behavior (pp. 187–276). New York: Josiah Macy Jr. Foundation.Google Scholar
  89. Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems. Neural Networks, 12, 1131–1141.CrossRefGoogle Scholar
  90. Varela, F. J. (1979). Principles of biological autonomy. New York: North Holland.Google Scholar
  91. Varela, F. J. (1997). Patterns of life: Intertwining identity and cognition. Brain and Cognition, 34, 72–87.CrossRefGoogle Scholar
  92. Verkhratsky, A., & Butt, A. (2007). Glial neurobiology. Chichester: Wiley.CrossRefGoogle Scholar
  93. Viggiano, D., Ibrahim, M., & Celio, M. R. (2000). Relationship between glia and the perineuronal nets of extracellular matrix in the rat cerebral cortex: Importance for volume transmission in the brain. In L. F. Agnati, K. Fuxe, C. Nicholson, & E. Syková (Eds.), Volume transmission revisited (Progress in brain research, Vol. 125, pp. 193–198). Amsterdam: Elsevier.CrossRefGoogle Scholar
  94. Weber, A., & Varela, F. J. (2002). Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1, 97–125.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations