Advertisement

Toward a Theory of Intelligent Complex Systems: From Symbolic AI to Embodied and Evolutionary AI

  • Klaus Mainzer
Chapter
Part of the Synthese Library book series (SYLI, volume 376)

Abstract

In the twentieth century, AI (artificial Intelligence) arose along with Turing’s theory of computability. AI-research was focused on using symbolic representations in computer programs to model human cognitive abilities. The final goal was a complete symbolic representation of human intelligence in the sense of Turing’s AI-test. Actually, human intelligence is only a special example of problem solving abilities which have evolved during biological evolution. In embodied AI and robotics, the emergence of intelligence is explained by bodily behavior and interaction with the environment. But, intelligence is not reserved to single organisms and brains. In a technical coevolution, computational networks grow together with technical and societal infrastructures generating automated and intelligent activities of cyberphysical systems. The article argues for a unified theory of intelligent complex systems.

Keywords

Classical AI Embodiment Networks Intelligent complex systems 

References

  1. acatech (Ed.). (2011). Cyberphysical systems. acatech position (acatech = National Academy of Science and Technology). Berlin: Springer.Google Scholar
  2. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.CrossRefGoogle Scholar
  3. Balch, T., & Parker, L. (Eds.). (2002). Robot teams: From diversity to polymorphism. Wellesley: A. K. Peters.Google Scholar
  4. Bekey, G. L. (2005). Autonomous robots. From biological inspiration to implementation and control. Cambridge, MA: MIT Press.Google Scholar
  5. Bellman, K. L. (2005). Self-conscious modeling. IT – Information Technology, 4, 188–194.Google Scholar
  6. Berners-Lee, T. (1999). Weaving the web: The original design and ultimate destiny of the world wide web by the inventor. San Francisco: Harper Collins.Google Scholar
  7. Braitenberg, V., & Radermacher, F. J. (Eds.). (2007). Interdisciplinary approaches to a new understanding of cognition and consciousness. Universitätsverlag Ulm: Ulm.Google Scholar
  8. Brooks, R. A. (1999). Cambrian intelligence: The early history of the new AI. Cambridge, MA: The MIT Press.Google Scholar
  9. Chalmers, D. (2010). The character of consciousness. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. CoTeSys. (2006–2011). is funded by the German Research Council DFG as a research cluster of excellence within the “excellence initiative” from 2006–2012.Google Scholar
  11. Cyber-Physical Systems. Program announcements & information. The National Science Foundation, Arlington, 30 Sept 2008.Google Scholar
  12. Dreyfus, H. L. (1979). What computer’s can’t do – The limits of artificial intelligence. New York: Harper & Row.Google Scholar
  13. Dreyfus, H. L. (1982). Husserl, intentionality, and cognitive science. Cambridge, MA: MIT Press.Google Scholar
  14. Freeman, W. J. (2004). How and why brains create meaning from sensory information. International Journal of Bifurcation and Chaos, 14, 515–530.CrossRefGoogle Scholar
  15. Friederici, A. D. (2006). The neural basis of language development and its impairment. Neuron, 52, 941–952.CrossRefGoogle Scholar
  16. Haken, H. (1996). Principles of brain functioning. A synergetic approach to brain activity, behaviour and cognition. Berlin: Springer.Google Scholar
  17. Hansmann, U. (2001). Pervasive computing handbook. Berlin: Springer.CrossRefGoogle Scholar
  18. Hebb, D. O. (1949). The organization of the behavior. New York: Wiley.Google Scholar
  19. Lee, E. (2008). Cyber-physical systems: Design challenges. In University of California, Berkeley Technical Report No. UCB/EECS-2008-8.Google Scholar
  20. Mainzer, K. (2003). KI – Künstliche intelligenz. Grundlagen intelligenter systeme. Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  21. Mainzer, K. (2007). Thinking in complexity. The computational dynamics of matter, mind, and mankind (5th ed.). New York: Springer.Google Scholar
  22. Mainzer, K. (2008a). The emergence of mind and brain: An evolutionary, computational, and philosophical approach. In R. Banerjee & B. K. Chakrabarti (Eds.), Models of brain and mind. Physical, computational and psychological approaches (pp. 115–132). Amsterdam: Elsevier.Google Scholar
  23. Mainzer, K. (2008b). Organic computing and complex dynamical systems. Conceptual foundations and interdisciplinary perspectives. In R. P. Würtz (Ed.), Organic computing (pp. 105–122). Berlin: Springer.Google Scholar
  24. Mainzer, K. (2009). From embodied mind to embodied robotics: Humanities and system theoretical aspects. Journal of Physiology, Paris, 103, 296–304.CrossRefGoogle Scholar
  25. Mainzer, K. (2010). Leben als Maschine? Von der Systembiologie zur Robotik und Künstlichen Intelligenz. Paderborn: Mentis.Google Scholar
  26. Mainzer, K. (2014). Die Berechnung der Welt. Von der Weltformel zu Big Data. München: C.H. Beck.CrossRefGoogle Scholar
  27. Mainzer, K., & Chua, L. O. (2011). The universe as automaton. From simplicity and symmetry to complexity. Berlin: Springer.Google Scholar
  28. Mainzer, K., & Chua, L. O. (2013). Local activity principle. London: Imperial College Press.CrossRefGoogle Scholar
  29. Mataric, M., Sukhatme, G., & Ostergaard, E. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2–3), 253–261.Google Scholar
  30. Merleau-Ponty, M. (1962). Phenomenology of perception. London: Kegan Paul.Google Scholar
  31. Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.Google Scholar
  32. Pfeifer, R., & Scheier, C. (2001). Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
  33. Scott, A. (2003). Nonlinear science. Emergence and dynamics of coherent structures. Oxford: Oxford University Press.Google Scholar
  34. Shuji Kajita. (2007). Humanoide roboter. Theorie und Technik des Künstlichen Menschen. Berlin: Aka GmbH.Google Scholar
  35. Singer, W. (1994). The role of synchrony in neocortical processing and synaptic plasticity. In E. Domany, L. van Hemmen, & K. Schulten (Eds.), Models of neural networks II. Berlin: Springer.Google Scholar
  36. Tarski, A. (1935). Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica, 1, 261–405.Google Scholar
  37. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.Google Scholar
  38. Wedde, H. J., Lehnhoff, S., Rehtanz, C., & Krause, O. (2008). Von eingebetteten Systemen zu Cyber-Physical Systems. Eine neue Forschungsdimension für verteilte eingebettete Realzeitsysteme. In Pearl 2008 – Informatik Aktuell. Aktuelle Anwendungen in Technik und Wirtschaft 2007 12.Google Scholar
  39. Weiser, M. (1991). The computer for the 21st century. Scientific American, 9, 66–75.Google Scholar
  40. Wilson, E. O. (2000). Sociobiology: The new synthesis (25th ed.). Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Klaus Mainzer
    • 1
  1. 1.Technical University MunichMunichGermany

Personalised recommendations