The Computational Theory of Cognition

  • Gualtiero PiccininiEmail author
Part of the Synthese Library book series (SYLI, volume 376)


According to the computational theory of cognition (CTC), cognitive capacities are explained by inner computations, which in biological organisms are realized in the brain. Computational explanation is so popular and entrenched that it’s common for scientists and philosophers to assume CTC without argument. But if we presuppose that neural processes are computations before investigating, we turn CTC into dogma. If, instead, our theory is to be genuinely empirical and explanatory, it needs to be empirically testable. To bring empirical evidence to bear on CTC, we need an appropriate notion of computation. In order to ground an empirical theory of cognition, as CTC was designed to be, a satisfactory notion of computation should satisfy at least two requirements: it should employ a robust notion of computation, such that there is a fact of the matter as to which computations are performed by which systems, and it should not be empirically vacuous, as it would be if CTC could be established a priori. In order to satisfy these requirements, the computational theory of cognition should be grounded in a mechanistic account of computation. Once that is done, I evaluate the computational theory of cognition on empirical grounds in light of our best neuroscience. I reach two main conclusions: cognitive capacities are explained by the processing of spike trains by neuronal populations, and the processing of spike trains is a kind of computation that is interestingly different from both digital computation and analog computation.


Computational theory of cognition Neural computation Explanation Mechanism Spike trains Digital computation Analog computation 


  1. Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. New York: Norton.Google Scholar
  2. Barberis, S. D. (2013). Functional analyses, mechanistic explanations, and explanatory tradeoffs. Journal of Cognitive Science, 14(3), 229–251.CrossRefGoogle Scholar
  3. Bechtel, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience. London: Routledge.Google Scholar
  4. Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as scientific research strategies. Princeton: Princeton University Press.Google Scholar
  5. Block, N. (1978). Troubles with functionalism. In C. W. Savage (Ed.), Perception and cognition: Issues in the foundations of psychology (6th ed., pp. 261–325). Minneapolis: University of Minnesota Press.Google Scholar
  6. Boone, T., & Piccinini, G. (2015). “The cognitive neuroscience revolution”. Synthese. doi: 10.1007/s11229-015-0783-4
  7. Bringsjord, S. (1995). Computation, among other things, is beneath us. Minds and Machines, 4, 469–488.CrossRefGoogle Scholar
  8. Burge, T. (1986). Individualism and psychology. Philosophical Review, 95, 3–45.CrossRefGoogle Scholar
  9. Chalmers, D. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12(4), 323–357.Google Scholar
  10. Chirimuuta, M. (2014). Mazviita Chirimuuta, minimal models and canonical neural computations: The distinctness of computational explanation in neuroscience. Synthese.Google Scholar
  11. Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge, MA: MIT Press.Google Scholar
  12. Copeland, B. J. (2000). Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind-machine issue. The Journal of Philosophy, XCVI(1), 5–32.Google Scholar
  13. Craver, C. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.Google Scholar
  14. Cummins, R. (1983). The nature of psychological explanation. Cambridge, MA: MIT Press.Google Scholar
  15. Cummins, R. (2000). “How does it work?” vs. “What are the laws?” Two conceptions of psychological explanation. In F. C. Keil & R. A. Wilson (Eds.), Explanation and cognition. Cambridge, MA: MIT Press.Google Scholar
  16. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.Google Scholar
  17. Dennett, D. C. (1978). Brainstorms. Cambridge, MA: MIT Press.Google Scholar
  18. Dretske, F. I. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press.Google Scholar
  19. Dreyfus, H. L. (1998). Response to my critics. In T. W. Bynum & J. H. Moor (Eds.), The digital phoenix: How computers are changing philosophy (pp. 193–212). Malden: Oxford, Blackwell.Google Scholar
  20. Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.Google Scholar
  21. Egan, F. (1995). Computation and content. Philosophical Review, 104, 181–203.CrossRefGoogle Scholar
  22. Eliasmith, C. (2003). Moving beyond metaphors: Understanding the mind for what it is. Journal of Philosophy, C(10), 493–520.CrossRefGoogle Scholar
  23. Ermentrout, G. B., & Terman, D. H. (2010). Mathematical foundations of neuroscience. New York: Springer.CrossRefGoogle Scholar
  24. Erneling, C. E., & Johnson, D. M. (2005). The mind as a scientific object: Between brain and culture. Oxford: Oxford University Press.Google Scholar
  25. Fetzer, J. H. (2001). Computers and cognition: Why minds are not machines. Dordrecht: Kluwer.CrossRefGoogle Scholar
  26. Fodor, J. A. (1968). Psychological explanation. New York: Random House.Google Scholar
  27. Fodor, J. A. (1997). Special sciences: Still autonomous after all these years. Philosophical Perspectives, 11, 149–163.Google Scholar
  28. Fodor, J. A. (1998). Concepts. Oxford: Clarendon Press.CrossRefGoogle Scholar
  29. Fresco, N. (2014). Physical computation and cognitive science. New York: Springer.CrossRefGoogle Scholar
  30. Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. Malden: Wiley-Blackwell.CrossRefGoogle Scholar
  31. Garson, J. (2003). The introduction of information into neurobiology. Philosophy of Science, 70, 926–936.CrossRefGoogle Scholar
  32. Gerard, R. W. (1951). Some of the problems concerning digital notions in the central nervous system. In H. v. Foerster, M. Mead, & H. L. Teuber (Eds.), Cybernetics: Circular causal and feedback mechanisms in biological and social systems. Transactions of the seventh conference (pp. 11–57). New York: Macy Foundation.Google Scholar
  33. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.Google Scholar
  34. Glennan, S. S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 64, 605.CrossRefGoogle Scholar
  35. Globus, G. G. (1992). Towards a noncomputational cognitive neuroscience. Journal of Cognitive Neuroscience, 4(4), 299–310.CrossRefGoogle Scholar
  36. Grush, R. (2003). In defense of some ‘Cartesian’ assumptions concerning the brain and its operation. Biology and Philosophy, 18, 53–93.CrossRefGoogle Scholar
  37. Harnad, S. (1996). Computation is just interpretable symbol manipulation; cognition isn’t. Minds and Machines, 4, 379–390.CrossRefGoogle Scholar
  38. Haugeland, J. (1997). What is mind design? In J. Haugeland (Ed.), Mind design II (pp. 1–28). Cambridge, MA: MIT Press.Google Scholar
  39. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–2558.CrossRefGoogle Scholar
  40. Horst, S. W. (1996). Symbols, computation, and intentionality: A critique of the computational theory of mind. Berkeley: University of California Press.Google Scholar
  41. Johnson, D. M., & Erneling, C. E. (Eds.). (1997). The future of the cognitive revolution. New York: Oxford University Press.Google Scholar
  42. Koch, C. (1999). Biophysics of computation: Information processing in single neurons. New York: Oxford University Press.Google Scholar
  43. Lucas, J. R. (1996). Minds, machines, and Gödel: A retrospect. In P. J. R. Millikan & A. Clark (Eds.), Machines and thought: The legacy of Alan Turing. Oxford: Clarendon.Google Scholar
  44. Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261.CrossRefGoogle Scholar
  45. Machamer, P. K., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  46. Maley, C., & Piccinini, G. (forthcoming). The ontology of functional mechanisms. In D. Kaplan (Ed.), Integrating psychology and neuroscience: Prospects and problems. Oxford: Oxford University Press.Google Scholar
  47. Marr, D. (1982). Vision. New York: Freeman.Google Scholar
  48. Maudlin, T. (1989). Computation and consciousness. Journal of Philosophy, 86(8), 407–432.CrossRefGoogle Scholar
  49. McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7, 115–133.CrossRefGoogle Scholar
  50. Mellor, D. H. (1989). How much of the mind is a computer? In P. Slezak & W. R. Albury (Eds.), Computers, brains and minds (pp. 47–69). Dordrecht: Kluwer.CrossRefGoogle Scholar
  51. Milkowski, M. (2013). Explaining the computational, mind. Cambridge, MA: MIT Press.Google Scholar
  52. Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
  53. Morgan, A. (2014). Representations gone mental. Synthese, 191(2), 213–244.CrossRefGoogle Scholar
  54. Newell, A., & Simon, H. A. (1976). Computer science as an empirical enquiry: Symbols and search. Communications of the ACM, 19, 113–126.CrossRefGoogle Scholar
  55. Ó Nualláin, S., & Mc Kevitt, P. (Eds.). (1997). Two sciences of mind: Readings in cognitive science and consciousness. Philadelphia: John Benjamins.Google Scholar
  56. O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT Press.Google Scholar
  57. Penrose, R. (1994). Shadows of the mind. Oxford: Oxford University Press.Google Scholar
  58. Pereboom, D., & Kornblith, H. (1991). The metaphysics of irreducibility. Philosophical Studies, 63.Google Scholar
  59. Perkel, D. H. (1990). Computational neuroscience: Scope and structure. In E. L. Schwartz (Ed.), Computational neuroscience (pp. 38–45). Cambridge, MA: MIT Press.Google Scholar
  60. Piccinini, G. (2004a). The first computational theory of mind and brain: A close look at McCulloch and Pitts’s ‘logical calculus of ideas immanent in nervous activity’. Synthese, 141(2), 175–215.CrossRefGoogle Scholar
  61. Piccinini, G. (2004b). Functionalism, computationalism, and mental contents. Canadian Journal of Philosophy, 34(3), 375–410.CrossRefGoogle Scholar
  62. Piccinini, G. (2004b). Functionalism, computationalism, and mental states. Studies in the History and Philosophy of Science, 35(4), 811–833.CrossRefGoogle Scholar
  63. Piccinini, G. (2007a). Computational modeling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.CrossRefGoogle Scholar
  64. Piccinini, G. (2007b). Computing mechanisms. Philosophy of Science, 74(4), 501–526.CrossRefGoogle Scholar
  65. Piccinini, G. (2007). Computational explanation and mechanistic explanation of mind. In M. De Caro, F. Ferretti, & M. Marraffa (Eds.), Cartographies of the mind: Philosophy and psychology in intersection (pp. 23–36). Dordrecht: Springer.CrossRefGoogle Scholar
  66. Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.CrossRefGoogle Scholar
  67. Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.CrossRefGoogle Scholar
  68. Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283–311.CrossRefGoogle Scholar
  69. Piccinini, G., & Maley, C. (2014). The metaphysics of mind and the multiple sources of multiple realizability. In M. Sprevak & J. Kallestrup (Eds.), New waves in the philosophy of mind (125–152). Palgrave Macmillan.Google Scholar
  70. Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38.CrossRefGoogle Scholar
  71. Port, R. F., & van Gelder, T. (Eds.). (1995). Mind and motion: Explorations in the dynamics of cognition. Cambridge, MA: MIT Press.Google Scholar
  72. Putnam, H. (1967). Psychological predicates (Art, philosophy, and religion). Pittsburgh: University of Pittsburgh Press.Google Scholar
  73. Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.Google Scholar
  74. Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.Google Scholar
  75. Ramsey, W. (2007). Representation reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  76. Rubel, L. A. (1985). The brain as an analog computer. Journal of Theoretical Neurobiology, 4, 73–81.Google Scholar
  77. Rumelhart, D. E., & McClelland, J. M. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.Google Scholar
  78. Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  79. Searle, J. R. (1992). The rediscovery of the mind. Cambridge, MA: MIT Press.Google Scholar
  80. Segal, G. (1991). Defence of a reasonable individualism. Mind, 100, 485–493.CrossRefGoogle Scholar
  81. Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.Google Scholar
  82. Shagrir, O. (2001). Content, computation and externalism. Mind, 110(438), 369–400.CrossRefGoogle Scholar
  83. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153(3), 393–416.CrossRefGoogle Scholar
  84. Siegelmann, H. T. (1999). Neural networks and analog computation: Beyond the Turing limit. Boston: Birkhäuser.CrossRefGoogle Scholar
  85. Sullivan, J. (2009). The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience. Synthese, 167, 511–539.CrossRefGoogle Scholar
  86. Taube, M. (1961). Computers and common sense: The myth of thinking machines. New York: Columbia University Press.Google Scholar
  87. Thelen, E., & Smith, L. (1994). A dynamic systems approach to the development of cognition and action. Cambridge, MA: MIT Press.Google Scholar
  88. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. In M. Davis (Ed.), The undecidable. Hewlett: Raven.Google Scholar
  89. van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, XCII(7), 345–381.CrossRefGoogle Scholar
  90. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
  91. von Neumann, J. (1958). The computer and the brain. New Haven: Yale University Press.Google Scholar
  92. Weiskopf, D. (2011). Models and mechanisms in psychological explanation. Synthese, 183, 313–338.CrossRefGoogle Scholar
  93. Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine. Cambridge, MA: MIT Press.Google Scholar
  94. Wilson, R. A. (2004). Boundaries of the mind: The individual in the fragile sciences. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  95. Wright, C. (1995). Intuitionists are not (Turing) machines. Philosophia Mathematica, 3(3), 86–102.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Missouri-St. LouisSt. LouisUSA

Personalised recommendations