Leibniz’s Art of Infallibility, Watson, and the Philosophy, Theory, and Future of AI

  • Selmer Bringsjord
  • Naveen Sundar Govindarajulu
Part of the Synthese Library book series (SYLI, volume 376)


When IBM’s Deep Blue beat Kasparov in 1997, Bringsjord (Technol Rev 101(2):23–28, 1998) complained that despite the impressive engineering that made this victory possible, chess is simply too easy a challenge for AI, given the full range of what the rational side of the human mind can muster. However, arguably everything changed in 2011. For in that year, playing not a simple board game, but rather an open-ended game based in natural language, IBM’s Watson trounced the best human Jeopardy! players on the planet. And what does Watson’s prowess tell us about the philosophy, theory, and future of AI? We present and defend snyoptic answers to these questions, ones based upon Leibniz’s seminal writings on a universal logic, on a Leibnizian “three-ray” space of computational formal logics that, inspired by those writings, we have invented, and on a “scorecard” approach to assessing real AI systems based in turn on that three-ray space.


Chess Watson Gary Kasparov IBM Jeopardy! Three-ray space Leibniz 


  1. Arkoudas, K. (2000). Denotational Proof Languages. PhD thesis, MIT.Google Scholar
  2. Arkoudas, K., & Bringsjord, S. (2009). Vivid: An AI framework for heterogeneous problem solving. Artificial Intelligence, 173(15), 1367–1405., the url provides a preprint of the penultimate draft only. If for some reason it is not working, please contact either author directly by email.
  3. Baader, F., Calvanese, D., & McGuinness, D. (Eds.). (2007). The description logic handbook: Theory, implementation (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  4. Baker, S., Ireland, A., & Smaill, A. (1992). On the use of the constructive omega-rule within automated deduction. In Logic Programming and Automated Reasoning (pp. 214–225). Berlin/New York: Springer.CrossRefGoogle Scholar
  5. Barwise, J. (1980). Infinitary logics. In E. Agazzi (Ed.), Modern logic: A survey (pp. 93–112). Dordrecht, Reidel.Google Scholar
  6. Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2007). Computability and logic (5th ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Bringsjord, S. (1992). What robots can and can’t be. Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. Bringsjord, S. (1998). Chess is too easy. Technology Review, 101(2), 23–28. Google Scholar
  9. Bringsjord, S. (2008). Declarative/logic-based cognitive modeling. In R. Sun (Ed.), The handbook of computational psychology (pp. 127–169). Cambridge: Cambridge University Press. Scholar
  10. Bringsjord, S. (2011). Psychometric artificial intelligence. Journal of Experimental and Theoretical Artificial Intelligence, 23(3), 271–277.CrossRefGoogle Scholar
  11. Bringsjord, S. (2012). Belief in the singularity is logically Brittle. Journal of Consciousness Studies, 19(7), 14–20. Google Scholar
  12. Bringsjord, S., & Arkoudas, K. (2006). On the provability, veracity, and AI-relevance of the church-turing thesis. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church’s thesis after 70 years (pp. 66–118). Frankfurt: Ontos Verlag., This book is in the series Mathematical Logic, edited by W. Pohlers, T. Scanlon, E. Schimmerling, R. Schindler, and H. Schwichtenberg.Google Scholar
  13. Bringsjord, S., & Ferrucci, D. (2000). Artificial intelligence and literary creativity: Inside the mind of brutus, a storytelling machine. Mahwah: Lawrence Erlbaum.Google Scholar
  14. Bringsjord, S., & Govindarajulu, N. S. (2012). Given the web, what is intelligence, really? Metaphilosophy, 43(4), 361–532.\NSG\Real\Intelligence\040912.pdf, This URL is to a preprint of the paper.
  15. Bringsjord, S., & Govindarajulu, N. S. (2013). Toward a modern geography of minds, machines, and math. In V. C. Müller (Ed.), Philosophy and theory of artificial intelligence (Studies in applied philosophy, epistemology and rational ethics, Vol. 5, pp. 151–165). New York: Springer. doi:10.1007/978-3-642-31674-6_11, CrossRefGoogle Scholar
  16. Bringsjord, S., & Licato, J. (2012). Psychometric artificial general intelligence: The Piaget-MacGuyver room. In P. Wang & B. Goertzel (Eds.), Foundations of artificial general intelligence (pp. 25–47). Amsterdam: Atlantis Press., This url is to a preprint only.
  17. Bringsjord, S., & Schimanski, B. (2003). What is artificial intelligence? Psychometric AI as an answer. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI–03) (pp. 887–893). San Francisco: Morgan Kaufmann. Google Scholar
  18. Bringsjord, S., Bringsjord, A., & Bello, P. (2013). Belief in the singularity is fideistic. In A. Eden, J. Moor, J. S​​​ øraker, & E. Steinhart (Eds.), The singularity hypothesis (pp. 395–408). New York: Springer.Google Scholar
  19. Bringsjord, S., Govindarajulu, N., Ellis, S., McCarty, E., & Licato, J. (2014). Nuclear deterrence and the logic of deliberative mindreading. Cognitive Systems Research, 28, 20–43.CrossRefGoogle Scholar
  20. Chalmers, D. (2010). The singularity: A philosophical analysis. Journal of Consciousness Studies, 17, 7–65.Google Scholar
  21. Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In D. Fisher & H.-J. Lenz (Eds.), Learning from data (Lecture Notes in Statistics, Vol. 112, pp. 121–130). Berlin: Springer.CrossRefGoogle Scholar
  22. Ferrucci, D. A., & Murdock, J. W. (Eds.). (2012). IBM Journal of Research and Development, 56.
  23. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Murdock, W., Nyberg, E., Prager, J., Schlaefer, N., & Welty, C. (2010). Building Watson: An overview of the DeepQA project. AI Magazine, 31, 59–79. Google Scholar
  24. Goble, L. (Ed.). (2001). The Blackwell guide to philosophical logic. Oxford: Blackwell Publishing.Google Scholar
  25. Gondek, D., Lally, A., Kalyanpur, A., Murdock, J. W., Dubou, P. A., Zhang, L., Pan, Y., Qiu, Z., & Welty, C. (2012). A framework for merging and ranking of answers in DeepQA. IBM Journal of Research and Development, 56(3.4), 14:1–14:12.Google Scholar
  26. Good, I. J. (1965). Speculations concerning the first ultraintelligent machines. In F. Alt & M. Rubinoff (Eds.), Advances in computing (Vol. 6, pp. 31–38). New York: Academic.Google Scholar
  27. Govindarajalulu, N., Bringsjord, S., & Taylor, J. (2014). Proof verification and proof discovery for relativity. Synthese, 1–18. doi:10.1007/s11229-014-0424-3,
  28. Govindarajulu, N. S., Bringsjord, S., & Licato, J. (2013). On deep computational formalization of natural language. In M. H. A. Abdel-Fattah & K. -U. Kühnberger (Ed.), Proceedings of the Workshop: “Formalizing Mechanisms for Artificial General Intelligence and Cognition” (Formal MAGiC) at Artificial General Intelligence 2013.
  29. Halpern, J. (1990). An analysis of first-order logics of probability. Artificial Intelligence, 46(3), 311–350.CrossRefGoogle Scholar
  30. Hobbes, T. (1981). Computatio sive logica: logic De corpore, Part 1. Abaris, Norwalk, CT, This volume provides both an English and Latin version of Part 1 (Chaps. 1–6) of Hobbes’s book—as it’s known—De Corpore, which was first published in 1655. The editors are: I. Hungerland (Editor), G. Vick; translator: A. Martinich.Google Scholar
  31. Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer.Google Scholar
  32. Leibniz, G. W. (1991). Discourse on metaphysics • correspondence with Arnauld • monadology. Open court, LaSalle, IL, this is the twelfth printing. First published in 1902 (G. Montgomery, Trans.; translation modified by Albert Chandler).Google Scholar
  33. Leibniz, G., & Gerhardt, C. (1890). Philosophischen Schriften von Leibniz (Vol. 7). Berlin: Weidmann. DE, gerhardt is the editor.Google Scholar
  34. Lewis, C. I. (1960). A survey of symbolic logic: The classic algebra of logic. New York: Dover.Google Scholar
  35. Lewis, C. I., & Langford, C. H. (1932). Symbolic logic. New York: Century Company.Google Scholar
  36. Mueller, E. (2006). Commonsense reasoning. San Francisco: Morgan Kaufmann.Google Scholar
  37. Naumowicz, A., & Kornilowicz, A. (2009). A brief overview of Mizar. DOI Retrieved on July 26, 2013. Google Scholar
  38. Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–136.CrossRefGoogle Scholar
  39. Robinson, A. (1996). Non-standard analysis. Princeton: Princeton University Press. This is a reprint of the revised 1974 edition of the book. The original publication year of this seminal work was 1966.Google Scholar
  40. Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  41. Simpson, S. G. (2009). Subsystems of second order arithmetic (Vol. 1). Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Selmer Bringsjord
    • 1
    • 2
  • Naveen Sundar Govindarajulu
    • 1
  1. 1.Rensselaer AI & Reasoning (RAIR) Lab, Department of Cognitive ScienceRensselaer Polytechnic Institute (RPI)TroyUSA
  2. 2.Department of Computer ScienceRensselaer Polytechnic Institute (RPI)Troy, NYUSA

Personalised recommendations