Skip to main content

Introduction

  • Chapter
  • First Online:
Harmonics in Offshore Wind Power Plants

Part of the book series: Springer Theses ((Springer Theses))

  • 1422 Accesses

Abstract

This chapter presents a description of nowadays large offshore wind power plants (OWPPs) with widespread usage of power electronic devices (PEDs). Selected challenges and opportunities, related to this Industrial Ph.D. project will be described. The overview given in this chapter provides the information needed for defining the scope and expected deliverables from the Ph.D. project, which will be presented in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.H. Kocewiak, J. Hjerrild, C.L. Bak, Software development for harmonic and transient measurements in wind farms. IEEE Trans. Instrum. Meas. (2011)

    Google Scholar 

  2. L. Sainz, J.J. Mesas, R. Teodorescu, P. Rodriguez, Deterministic and stochastic study of wind farm harmonic currents. IEEE Trans. Energy Convers. 25, 1071–1080 (2010)

    Article  Google Scholar 

  3. V. Akhmatov, P.B. Eriksen, A large wind power system in almost island operation—a Danish case study. IEEE Trans. Power Syst. 22(3), 937–943 (2007)

    Article  Google Scholar 

  4. The World Wind Energy Association, 2014 Half-year report, 2014

    Google Scholar 

  5. REN 21, Global status report, 2014

    Google Scholar 

  6. V. Pappala, S. Singh, M. Wilch, I. Erlich, Reactive power management in offshore wind farms by adaptive PSO, in International Conference on Intelligent Systems Applications to Power Systems, ISAP, 2007, pp. 1–8

    Google Scholar 

  7. P. Brogan, The stability of multiple, high power, active front end voltage sourced converters when connected to wind farm collector systems, in Proceedings of 2010 EPEC, 2010

    Google Scholar 

  8. M. Liserre, R. Teodorescu, F. Blaabjerg, Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263–272 (2006)

    Article  Google Scholar 

  9. J. Sun, Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075–3078 (2011)

    Article  Google Scholar 

  10. M. Mohseni, S.M. Islam, Comparing technical connection requirements for large wind power plants, in Power and Energy Society General Meeting (IEEE, 2011), pp. 1–8

    Google Scholar 

  11. A. L’Abbate et. al., The role of facts and HVDC in the future Pan-European transmission system development, in 9th IET International Conference on AC and DC Power Transmission, ACDC, 2010, pp. 1–8

    Google Scholar 

  12. J. Glasdam, J. Hjerrild, L.H. Kocewiak, C.L. Bak, L. Zeni, Comparison of field measurements and EMT simulation results on a multi-level STATCOM for grid integration of London array wind farm, in Cigré Paris Session, 2014, p. B4_206_2014

    Google Scholar 

  13. L.H. Kocewiak, C.L. Bak, J. Hjerrild, Harmonic aspects of offshore wind farms, 2010

    Google Scholar 

  14. W. Wiechowski, P.B. Eriksen, Selected studies on offshore wind farm cable connections-challenges and experience of the Danish TSO, in Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (IEEE, 2008), pp. 1–8

    Google Scholar 

  15. K. Xiangyu, J. Hongjie, Techno-economic analysis of SVC-HVDC transmission system for offshore wind, in Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2011, pp. 1–5

    Google Scholar 

  16. J. Glasdam, et al., HVDC connected offshore wind power plants: review and outlook of current research, in Proceedings of the 12th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants (London, 2013)

    Google Scholar 

  17. J. Glasdam, J. Hjerrild, L.H. Kocewiak, C.L. Bak, Review on multi-level voltage source converter based HVDC technologies for grid connection of large offshore wind farms, in 2012 IEEE International Conference on Power System Technology (POWERCON), 2012, pp. 1–6

    Google Scholar 

  18. S.K. Chaudhary, R. Teodorescu, P. Rodriguez, P.C. Kjaer, A.M. Gole, Negative sequence current control in wind power plants with VSC-HVDC connection. IEEE Trans. Sustain. Energy 3(3), 535–544 (2012)

    Article  Google Scholar 

  19. S.K. Chaudhary, Control and Protection of Wind Power Plants with VSC-HVDC Connection, Ph.D. thesis, Aalborg University, Aalborg, Denmark, 2011

    Google Scholar 

  20. L.H. Kocewiak, J. Hjerrild, C.L. Bak, Harmonic models of a back-to-back converter in large offshore wind farms compared with measurement data, in Nordic Wind Power Conference (NWPC), 2009

    Google Scholar 

  21. Ł.H. Kocewiak, J. Hjerrild, C. Leth Bak, Wind turbine converter control interaction with complex wind farm systems, IET Renew. Power Gen. 7(4), 380–389 (2013)

    Google Scholar 

  22. The Crown Estate, The crown estate round 3 offshore wind farm connection study version 1.0, 2008

    Google Scholar 

  23. H.J. Knaak, Modular multilevel converters and HVDC/FACTS: a success story, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE), 2011, pp. 1–6

    Google Scholar 

  24. B. Jacobson, Y. Jiang-Hafner, P. Rey, G. Asplund, M. Jeroense, A. Gustafsson, M. Bergkvist, HVDC with voltage source converters and extruded cables for up to ±300 kV and 1000 MW, in Cigre session, 2006, pp. B4–105

    Google Scholar 

  25. B. Jacobson, P. Karlsson, G. Asplund, L. Harnefors, T. Jonsson, VSC-HVDC transmission with cascaded two-level converters, in CIGRÉ SC B4 Session, 2010

    Google Scholar 

  26. K. Friedrich, Modern HVDC PLUS application of VSC in modular multilevel converter topology, in 2010 IEEE International Symposium on Industrial Electronics (ISIE), 2010, pp. 3807–3810

    Google Scholar 

  27. G. Mondal, R. Critchley, F. Hassan, W. Crookes, Design and simulation of a modular multi-level converter for MVDC application, in 2011 IEEE International Symposium on Industrial Electronics (ISIE), June 2011, pp. 200–205

    Google Scholar 

  28. R. Whitehouse, C. Oates, J. Maneiro, N. MacLeod, A new simulator laboratory for research and development of VSC HVDC topologies and control algorithms, in 9th IET International Conference on AC and DC Power Transmission, ACDC, 2010, pp. 1–5

    Google Scholar 

  29. U.N. Gnanarathna, A.M. Gole, R.P. Jayasinghe, Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs. IEEE Trans. Power Deliv. 26(1), 316–324 (2011)

    Article  Google Scholar 

  30. C. Oates, C. Davidson, A comparison of two methods of estimating losses in the modular multi-level converter, in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE), 2011, pp. 1–10

    Google Scholar 

  31. T. Nakajima, S. Irokawa, A control system for HVDC transmission by voltage sourced converters, in Power Engineering Society Summer Meeting, vol. 2, (IEEE, 1999), pp. 1113–1119

    Google Scholar 

  32. J. Kreusel, D. Retzmann, Integrated AC/DC transmission systems–benefits of power electronics for security and sustainability of power supply, in Power System Computation Conference, 2008

    Google Scholar 

  33. H. Dong, M. Yuan, The study of control strategy for VSC-HVDC applied in offshore wind farm and grid connection, in Asia-Pacific Power and Energy Engineering Conference (APPEEC), March 2011, pp. 1-4

    Google Scholar 

  34. S. Ruihua, Z. Chao, L. Ruomei, Z. Xiaoxin, VSCs based HVDC and its control strategy, in Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, 2005, pp. 1–6

    Google Scholar 

  35. L. Xu, L. Yao, C. Sasse, Grid integration of large DFIG-based wind farms using VSC transmission. IEEE Trans. Power Syst. 22(3), 976–984 (2007)

    Article  Google Scholar 

  36. A. Bodin, HVDC Light a preferable power transmission system for renewable energies, in Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), 2011, pp. 1–4

    Google Scholar 

  37. X. Chen, W. Lin, H. Sun, J. Wen, N. Li, L. Yao, LCC based MTDC for grid integration of large onshore wind farms in Northwest China, in Power and Energy Society General Meeting (IEEE, 2011), pp. 1–10

    Google Scholar 

  38. S. Bozhko, R. Li, R. Blasco-Gimenez, G. Asher, J. Clare, L. Yao, C. Sasse, STATCOM-controlled HVDC power transmission for large offshore wind farms: engineering issues, in IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 2006, pp. 4219–4224

    Google Scholar 

  39. N. Flourentzou, V.G. Agelidis, G.D. Demetriades, VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009)

    Article  Google Scholar 

  40. B. Gemmell, J. Dorn, D. Retzmann, D. Soerangr, Prospects of multilevel VSC technologies for power transmission, in Transmission and Distribution Conference and Exposition, IEEE/PES, 2008, pp. 1–16

    Google Scholar 

  41. ABB, It’s time to connect, 7th edn. (2013)

    Google Scholar 

  42. H.-P. Nee, L. Ängquist, Perspectives on power electronics and grid solutions for offshore wind farms, 2010

    Google Scholar 

  43. M. Pereira, D. Retzmann, J. Lottes, M. Wiesinger, G. Wong, SVC PLUS: an MMC STATCOM for network and grid access applications, in IEEE Trondheim PowerTech, 2011, pp. 1–5

    Google Scholar 

  44. H.K. Tyll, F. Schettler, Historical overview on dynamic reactive power compensation solutions from the begin of AC power transmission towards present applications, in IEEE/PES Power Systems Conference and Exposition—PSCE’09 (Seattle, 2009)

    Google Scholar 

  45. A. Adamczyk, R. Teodorescu, R. Mukerjee, P. Rodriguez, Overview of FACTS devices for wind power plants directly connected to the transmission network, in IEEE International Symposium on Industrial Electronics (ISIE), 2010, pp. 3742–3748

    Google Scholar 

  46. P. Maibach, J. Wernli, P. Jones, M. Obad, STATCOM technology for wind parks to meet grid code requirements, in Proceedings of EWEC, 2007

    Google Scholar 

  47. I. Erlich, F. Shewarega, Insert impact of large-scale wind power generation on the dynamic behaviour of intrerconnected systems, in IREP Symposium, 2007

    Google Scholar 

  48. E.H. Camm, et al., Reactive power compensation for wind power plants, in Power Energy Society General Meeting. PES’09 (IEEE, 2009), pp. 1–7

    Google Scholar 

  49. T. Ackermann, Wind power in power systems (Wiley, England, 2005)

    Google Scholar 

  50. J.S. Lai, F.Z. Peng, Multilevel converters-a new breed of power converters. IEEE Trans. Ind. Appl. 32(3), 509–517 (1996)

    Article  Google Scholar 

  51. K.R. Padiyar, Facts controllers in power transmission and distribution (New Age International (P)Ltd., Publishers, 2007)

    Google Scholar 

  52. C.C. Davidson, G. de Préville, The future of high power electronics in transmission and distribution power systems, in 13th European Conference on Power Electronics and Applications, EPE, 2009, pp. 1–14

    Google Scholar 

  53. R.C. Knight, D.J. Young, D.R. Trainer, Relocatable GTO-based static-var compensator for NGC Substations, in CIGRE Session (Paris, 1998)

    Google Scholar 

  54. A. Lesnicar, R. Marquardt, An innovative modular multilevel converter topology suitable for a wide power range, in Power Tech Conference Proceedings, vol. 3 (IEEE, Bologna, 2003), p. 6

    Google Scholar 

  55. A. Scarfone, B. Oberlin, J. Di Luca Jr, D. Hanson, C. Horwill, A ±150 MVAr STATCOM for Northeast utilities’ Glenbrook substation, in Power Engineering Society General Meeting, vol. 3 (IEEE, 2003)

    Google Scholar 

  56. A. Shafiu, A. Hernandez, F. Schettler, J. Finn, E. Jorgensen, Harmonic studies for offshore windfarms, in 9th IET International Conference on AC and DC Power Transmission, ACDC, 2010, pp. 1–6

    Google Scholar 

  57. D.G. Holmes, T.A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice (IEEE Press, 2003)

    Google Scholar 

  58. L. Kocewiak, Harmonics in large offshore wind farms, Ph.D. thesis, Department of Energy Technology, Aalborg University, Aalborg, 2012

    Google Scholar 

  59. L. Harnefors, M. Bongiorno, S. Lundberg, Stability analysis of converter-grid interaction using the converter input admittance. Eur. Conf. Power Electron. Appl. 2007, 1–10 (2007)

    Google Scholar 

  60. X. Chen, J. Sun, Characterization of inverter-grid interactions using a hardware-in-the-loop system test-bed, in IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE and ECCE), 2011, pp. 2180–2187

    Google Scholar 

  61. J.H.R. Enslin, W.T.J. Hulshorst, A.M.S. Atmadji, P. Heskes, A. Kotsopoulos, J. Cobben, P. Van der Sluijs, Harmonic interaction between large numbers of photovoltaic inverters and the distribution network, in Power Tech Conference Proceedings, vol. 3, (IEEE, Bologna, 2003), p. 6

    Google Scholar 

  62. M. Cespedes, J. Sun, Online grid impedance identification for adaptive control of grid-connected inverters, in Energy Conversion Congress and Exposition (ECCE) (IEEE, 2012), pp. 914–921

    Google Scholar 

  63. X. Wang, F. Blaabjerg, Z. Chen, Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid. IEEE Trans. Ind. Appl. (2014)

    Google Scholar 

  64. E. Mollerstedt, B. Bernhardsson, Out of control because of harmonics-an analysis of the harmonic response of an inverter locomotive. IEEE Control Syst. Mag. 20(4), 70–81 (2000)

    Article  Google Scholar 

  65. E. Möllerstedt, Dynamic analysis of harmonics in electrical systems, Department of Automatic Control, Lund Institute of Technology, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glasdam, J.B. (2016). Introduction. In: Harmonics in Offshore Wind Power Plants. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26476-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26476-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26475-2

  • Online ISBN: 978-3-319-26476-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics