Skip to main content

Energy Conversion and Inventory of a Prototypical Magnetic Reconnection layer

  • Chapter
  • First Online:
Magnetic Reconnection

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 427))

Abstract

A comparative review study is made to find basic mechanisms of energy conversion and partitioning in a prototypical magnetic reconnection layer. The recent results from three different disciplines, laboratory experiments, space observations, and numerical simulations, are reviewed. Our quantitative studies of the acceleration and heating of both electrons and ions in the MRX (Magnetic Reconnection Experiment) laboratory experiment and our supporting numerical studies demonstrate that a half of the incoming magnetic energy is converted to particle energy with a remarkably fast speed. Comparing the results from numerical simulations and the MRX experiments, a systematic study is made on the effects of boundary conditions on the energy inventory. In our studies of a relatively wide range of monitoring box sizes in both MRX and 2D simulations, it is observed that 50 % of the inflowing magnetic energy is converted to particle energy, of which 2/3 is ultimately transferred to ions and 1/3 to electrons. These results are also consistent with the recent space measurements in the magnetotail reconnection layer by Eastwood et al. (Phys. Rev. Lett. 110, 225001, 2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To avoid confusion with the Poynting vector (S), we use \(\mathcal{L}_{q}\) instead of the conventional S to denote the Lundquist number.

References

  • V. Angelopoulos, A. Runov, X.-Z. Zhou, D.L. Turner, S.A. Kiehas, S.-S. Li, I. Shinohara, Electromagnetic energy conversion at reconnection fronts. Science 341(6153), 1478–1482 (2013)

    Article  ADS  Google Scholar 

  • N. Aunai, G. Belmont, R. Smets, Proton acceleration in antiparallel collisionless magnetic reconnection: kinetic mechanisms behind the fluid dynamics. J. Geophys. Res. 116, 09232 (2011)

    Article  Google Scholar 

  • J. Birn, M. Hesse, Energy release and conversion by reconnection in the magnetotail. Ann. Geophys. 23(10), 3365–3373 (2005)

    Article  ADS  Google Scholar 

  • J. Birn, M. Hesse, Reconnection in substorms and solar flares: analogies and differences. Ann. Geophys. 27(3), 1067–1078 (2009)

    Article  ADS  Google Scholar 

  • J. Birn, M. Hesse, Energy release and transfer in guide field reconnection. Phys. Plasmas 17(1), 012109 (2010)

    Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    Article  ADS  Google Scholar 

  • J. Birn, J.E. Borovsky, M. Hesse, Properties of asymmetric magnetic reconnection. Phys. Plasmas 15(3), 032101 (2008)

    Google Scholar 

  • J. Birn, J.E. Borovsky, M. Hesse, K. Schindler, Scaling of asymmetric reconnection in compressible plasmas. Phys. Plasmas 17(5), 052108 (2010)

    Google Scholar 

  • D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, New York, 2000)

    Book  Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma, in Reviews of Plasma Physics, vol. 1, ed. by M.A. Leontovich (Consultants Bureau, New York, 1965), pp. 205–311

    Google Scholar 

  • M.R. Brown, C.D. Cothran, J. Fung, Two fluid effects on three-dimensional reconnection in the swarthmore spheromak experiment with comparisons to space data. Phys. Plasmas 13(5), 056503 (2006)

    Google Scholar 

  • M.R. Brown, C.D. Cothran, D.H. Cohen, J. Horwitz, V. Chaplin, Flow dynamics and plasma heating of spheromaks in SSX. J. Fusion Energy 27, 16–19 (2008)

    Article  ADS  Google Scholar 

  • P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys. Plasmas 14(10), 102114 (2007)

    Google Scholar 

  • W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13(7), 072101 (2006)

    Google Scholar 

  • W. Daughton, V. Roytershteyn, B.J. Albright, H. Karimabadi, L. Yin, K.J. Bowers, Influence of coulomb collisions on the structure of reconnection layers. Phys. Plasmas 16(7), 072117 (2009)

    Google Scholar 

  • S. Dorfman, W. Daughton, V. Roytershteyn, H. Ji, Y. Ren, M. Yamada, Two-dimensional fully kinetic simulations of driven magnetic reconnection with boundary conditions relevant to the magnetic reconnection experiment. Phys. Plasmas 15(10), 102107 (2008)

    Google Scholar 

  • J.F. Drake, M. Swisdak, T.D. Phan, P.A. Cassak, M.A. Shay, S.T. Lepri, R.P. Lin, E. Quataert, T.H. Zurbuchen, Ion heating resulting from pickup in magnetic reconnection exhausts. J. Geophys. Res. 114, 05111 (2009)

    Article  Google Scholar 

  • J.P. Eastwood, T.D. Phan, M. Øieroset, M.A. Shay, Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: the 2001–2005 cluster observations and comparison with simulations. J. Geophys. Res. 115(A8), 08125 (2010)

    Google Scholar 

  • J.P. Eastwood, T.D. Phan, J.F. Drake, M.A. Shay, A.L. Borg, B. Lavraud, M.G.G.T. Taylor, Energy partition in magnetic reconnection in Earth’s magnetotail. Phys. Rev. Lett. 110, 225001 (2013)

    Article  ADS  Google Scholar 

  • A.G. Emslie, B.R. Dennis, G.D. Holman, H.S. Hudson, Refinements to flare energy estimates: a followup to “energy partition in two solar flare/CME events” by A.G. Emslie et al. J. Geophys. Res. 110(A11), 11103 (2005). ISBN:0148-0227

    Google Scholar 

  • G. Fiksel, D.J.D. Hartog, P.W. Fontana, An ical probe for local measurements of fast plasma ion dynamics. Rev. Sci. Instrum. 69(5), 2024–2026 (1998)

    Article  ADS  Google Scholar 

  • G. Fiksel, A.F. Almagri, B.E. Chapman, V.V. Mirnov, Y. Ren, J.S. Sarff, P.W. Terry, Mass-dependent ion heating during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 103, 145002 (2009)

    Article  ADS  Google Scholar 

  • A. Fujisawa, H. Ji, K. Yamagishi, S. Shinohara, H. Toyama, K. Miyamoto, Anomalous ion temperature and plasma resistance due to MHD fluctuations in Repute-1 reversed field pinch plasmas. Nucl. Fusion 31(8), 1443 (1991)

    Google Scholar 

  • S. Gangadhara, D. Craig, D.A. Ennis, D.J.D. Hartog, G. Fiksel, S.C. Prager, Spatially resolved measurements of ion heating during impulsive reconnection in the madison symmetric torus. Phys. Rev. Lett. 98, 075001 (2007)

    Article  ADS  Google Scholar 

  • W. Gekelman, R.L. Stenzel, N. Wild, Magnetic field line reconnection experiments, 3. Ion acceleration, flows, and anomalous scattering. J. Geophys. Res. 87, 101–110 (1982)

    Google Scholar 

  • R. Giovanelli, A theory of chromospheric flares. Nature 158(4003), 81–82 (1946)

    Article  ADS  Google Scholar 

  • J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, Accelerated plasma flows at the near-tail magnetopause. J. Geophys. Res. 91(A3), 3029–3041 (1986)

    Article  ADS  Google Scholar 

  • M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: electron processes and transport modeling. J. Geophys. Res. Space Phys. 106(A3), 3721–3735 (2001)

    Article  ADS  Google Scholar 

  • K. Higashimori, M. Hoshino, The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection. J. Geophys. Res. 117(A1), 01220 (2012)

    Google Scholar 

  • T.W. Hill, Magnetic merging in a collisionless plasma. J. Geophys. Res. 80(34), 4689–4699 (1975)

    Article  ADS  Google Scholar 

  • R. Horiuchi, T. Sato, Particle simulation study of collisionless driven reconnection in a sheared magnetic field. Phys. Plasmas 4(2), 277–289 (1997)

    Article  ADS  Google Scholar 

  • M. Hoshino, T. Mukai, T. Yamamoto, S. Kokubun, Ion dynamics in magnetic reconnection: comparison between numerical simulation and geotail observations. J. Geophys. Res. 103, 4509–4530 (1998)

    Article  ADS  Google Scholar 

  • S.C. Hsu, G. Fiksel, T.A. Carter, H. Ji, R.M. Kulsrud, M. Yamada, Local measurement of nonclassical ion heating during magnetic reconnection. Phys. Rev. Lett. 84, 3859–3862 (2000)

    Article  ADS  Google Scholar 

  • S. Imada, M. Hoshino, T. Mukai, Average profiles of energetic and thermal electrons in the magnetotail reconnection regions. Geophys. Res. Lett. 32(9), 09101 (2005)

    Google Scholar 

  • H. Ji, M. Yamada, S. Hsu, R. Kulsrud, Experimental test of the Sweet-Parker model of magnetic reconnection. Phys. Rev. Lett. 80, 3256–3259 (1998)

    Article  ADS  Google Scholar 

  • H. Ji, S. Terry, M. Yamada, R. Kulsrud, A. Kuritsyn, Y. Ren, Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004)

    Article  ADS  Google Scholar 

  • H. Ji, Y. Ren, M. Yamada, S. Dorfman, W. Daughton, S.P. Gerhardt, New insights into dissipation in the electron layer during magnetic reconnection. Geophys. Res. Lett. 35(13), 13106 (2008)

    Google Scholar 

  • H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron diffusion regions. Geophys. Res. Lett. 34, 13104 (2007)

    Article  ADS  Google Scholar 

  • T.W. Kornack, P.K. Sollins, M.R. Brown, Experimental observation of correlated magnetic reconnection and Alfvénic ion jets. Phys. Rev. E 58, 36–39 (1998)

    Article  ADS  Google Scholar 

  • S. Krucker, H.S. Hudson, L. Glesener, S.M. White, S. Masuda, J.-P. Wuelser, R.P. Lin, Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714(2), 1108 (2010)

    Google Scholar 

  • G. Lapenta, M. Goldman, D. Newman, S. Markidis, A. Divin, Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnections. Phys. Plasmas 21(5), (2014)

    Google Scholar 

  • A. Le, J. Egedal, O. Ohia, W. Daughton, H. Karimabadi, V.S. Lukin, Regimes of the electron diffusion region in magnetic reconnection. Phys. Rev. Lett. 110, 135004 (2013)

    Article  ADS  Google Scholar 

  • A. Le, J. Egedal, J. Ng, H. Karimabadi, J. Scudder, V. Roytershteyn, W. Daughton, Y.-H. Liu, Current sheets and pressure anisotropy in the reconnection exhaust. Phys. Plasmas 21(1), 012103 (2014)

    Google Scholar 

  • R.P. Lin, Energy release and particle acceleration in flares: summary and future prospects. Space Sci. Rev. 159, 421–445 (2011)

    Article  ADS  Google Scholar 

  • R.P. Lin, H.S. Hudson, Non-thermal processes in large solar flares. Sol. Phys. 50, 153–178 (1976)

    Article  ADS  Google Scholar 

  • R.P. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, R.A. Schwartz, B.R. Dennis, G.H. Share, R.J. Murphy, A.G. Emslie, C. Johns-Krull, N. Vilmer, Rhessi observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595(2), 69 (2003)

    Google Scholar 

  • Y.-H. Liu, J.F. Drake, M. Swisdak, The structure of the magnetic reconnection exhaust boundary. Phys. Plasmas 19(2), 022110 (2012)

    Google Scholar 

  • R.-F. Lottermoser, M. Scholer, A.P. Matthews, Ion kinetic effects in magnetic reconnection: hybrid simulations. J. Geophys. Res. 103(A3), 4547–4559 (1998)

    Article  ADS  Google Scholar 

  • S. Lu, Q. Lu, C. Huang, S. Wang, The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection. Phys. Plasmas 20(6), 061203 (2013)

    Google Scholar 

  • Z.W. Ma, A. Bhattacharjee, Role of photospheric footpoint shear in the impulsive dynamics of the solar corona. Geophys. Res. Lett. 23(21), 2955–2958 (1996). ISBN:0094-8276

    Google Scholar 

  • Z.W. Ma, H.E. Sun, L.C. Lee, A.T.Y. Lui, Energy transformation in a reconnection site. Phys. Plasmas 19(3), 032904 (2012)

    Google Scholar 

  • R.M. Magee, Ion energization during tearing mode magnetic reconnection in a high temperature plasma. Ph.D. thesis, University of Wisconsin-Madison, 2011

    Google Scholar 

  • R.M. Magee, D.J. Den Hartog, S.T.A. Kumar, A.F. Almagri, B.E. Chapman, G. Fiksel, V.V. Mirnov, E.D. Mezonlin, J.B. Titus, Anisotropic ion heating and tail generation during tearing mode magnetic reconnection in a high-temperature plasma. Phys. Rev. Lett. 107, 065005 (2011)

    Article  ADS  Google Scholar 

  • F.S. Mozer, P.L. Pritchett, Electron physics of asymmetric magnetic field reconnection. Space Sci. Rev. 158(1), 119–143 (2011)

    Article  ADS  Google Scholar 

  • F.S. Mozer, S.D. Bale, T.-D. Phan, Evidence of diffusion regions at a sub solar magnetopause crossing. Phys. Rev. Rett. 89, 015002 (2002)

    ADS  Google Scholar 

  • N.A. Murphy, C.R. Sovinec, Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry. Phys. Plasmas 15(4), 042313 (2008)

    Google Scholar 

  • T. Nagai, I. Shinohara, M. Fujimoto, M. Hoshino, Y. Saito, S. Machida, T. Mukai, J. Geophys. Res. 106, 25929 (2001). doi:10.1029/2001JA900038

    Article  ADS  Google Scholar 

  • M. Øieroset, T.-D. Phan, M. Fujimoto, R.P. Lin, R.P. Lepping, In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 412, 414–417 (2001)

    Article  ADS  Google Scholar 

  • Y. Ono, M. Yamada, T. Akao, T. Tajima, R. Matsumoto, Ion acceleration and direct ion heating in three-component magnetic reconnection. Phys. Rev. Lett. 76, 3328–3331 (1996)

    Article  ADS  Google Scholar 

  • Y. Ono, H. Tanabe, Y. Hayashi, T. Ii, Y. Narushima, T. Yamada, M. Inomoto, C.Z. Cheng, Ion and electron heating characteristics of magnetic reconnection in a two flux loop merging experiment. Phys. Rev. Lett. 107, 185001 (2011)

    Article  ADS  Google Scholar 

  • Y. Ono, H. Tanabe, T. Yamada, K. Gi, T. Watanabe, T. Ii, M. Gryaznevich, N. Scannell, R. Conway, B. Crowley, C. Michael, High power heating of magnetic reconnection in merging tokamak experiments Phys. Plasmas 22(5), 055708 (2015)

    Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62(4), 509–520 (1957)

    Article  ADS  Google Scholar 

  • G. Paschmann, B.U.Ö. Sonnerup, I. Papamastorakis, N. Sckopke, G. Haerendel, S.J. Bame, J.R. Asbridge, J.T. Gosling, C.T. Russell, R.C. Elphic, Plasma acceleration at the Earth’s magnetopause: evidence for reconnection. Nature 282, 243–246 (1979)

    Article  ADS  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation. NASA Spec. Pub. SP-50, 425 (1964)

    ADS  Google Scholar 

  • T.D. Phan, L.M. Kistler, B. Klecker, G. Haerendel, G. Paschmann, B.U.Ö. Sonnerup, W. Baumjohann, M.B. Bavassano-Cattaneo, C.W. Carlson, A.M. DiLellis, K.-H. Fornacon, L.A. Frank, M. Fujimoto, E. Georgescu, S. Kokubun, E. Moebius, T. Mukai, M. Oieroset, W.R. Paterson, H. Reme, Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404(6780), 848–850 (2000). ISBN:0028-0836

    Google Scholar 

  • T.D. Phan, M.W. Dunlop, G. Paschmann, B. Klecker, J.M. Bosqued, H. Rème, A. Balogh, C. Twitty, F.S. Mozer, C.W. Carlson, C. Mouikis, L.M. Kistler, Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions. Ann. Geophys. 22(7), 2355–2367 (2004)

    Article  ADS  Google Scholar 

  • T.D. Phan, M.A. Shay, J.T. Gosling, M. Fujimoto, J.F. Drake, G. Paschmann, M. Oieroset, J.P. Eastwood, V. Angelopoulos, Electron bulk heating in magnetic reconnection at Earth’s magnetopause: dependence on the inflow alfvén speed and magnetic shear. Geophys. Res. Lett. 40(17), 4475–4480 (2013)

    Article  ADS  Google Scholar 

  • T.D. Phan, J.F. Drake, M.A. Shay, J.T. Gosling, G. Paschmann, J.P. Eastwood, M. Oieroset, M. Fujimoto, V. Angelopoulos, Ion bulk heating in magnetic reconnection exhausts at Earth’s magnetopause: dependence on the inflow Alfvén speed and magnetic shear angle. Geophys. Res. Lett. 41(20), 7002–7010 (2014)

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection - MHD Theory and Applications (Cambridge University Press, New York, 2000)

    Book  MATH  Google Scholar 

  • P.L. Pritchett, Collisionless magnetic reconnection in a three-dimensional open system. J. Geophys. Res. 106(A11), 25961–25977 (2001)

    Article  ADS  Google Scholar 

  • P.L. Pritchett, Energetic electron acceleration during multi-island coalescence. Phys. Plasmas 15(10), 102105 (2008)

    Google Scholar 

  • P.L. Pritchett, Onset of magnetic reconnection in the presence of a normal magnetic field: realistic ion to electron mass ratio. J. Geophys. Res. 115(A10), 10208 (2010)

    Google Scholar 

  • P.L. Pritchett, F.S. Mozer, Asymmetric magnetic reconnection in the presence of a guide field. J. Geophys. Res. 114(A11), 11210 (2009)

    Google Scholar 

  • Y. Ren, M. Yamada, S. Gerhardt, H. Ji, R. Kulsrud, A. Kuritsyn, Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95, 055003 (2005)

    Article  ADS  Google Scholar 

  • Y. Ren, M. Yamada, H. Ji, S. Dorfman, S.P. Gerhardt, R. Kulsrud, Experimental study of the Hall effect and electron diffusion region during magnetic reconnection in a laboratory plasma. Phys. Plasmas 15, 082113 (2008a)

    Article  ADS  Google Scholar 

  • Y. Ren, M. Yamada, H. Ji, S.P. Gerhardt, R. Kulsrud, Identification of the electron-diffusion region during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 101, 085003 (2008b)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, W. Daughton, S. Dorfman, Y. Ren, H. Ji, M. Yamada, H. Karimabadi, L. Yin, B.J. Albright, K.J. Bowers, Driven magnetic reconnection near the dreicer limit. Phys. Plasmas 17(5), 055706 (2010)

    Google Scholar 

  • V. Roytershteyn, S. Dorfman, W. Daughton, H. Ji, M. Yamada, H. Karimabadi, Electromagnetic instability of thin reconnection layers: comparison of three-dimensional simulations with MRX observations. Phys. Plasmas 20(6), (2013)

    Google Scholar 

  • E. Scime, S. Hokin, N. Mattor, C. Watts, Ion heating and magnetohydrodynamic dynamo fluctuations in the reversed-field pinch. Phys. Rev. Lett. 68, 2165–2167 (1992)

    Article  ADS  Google Scholar 

  • M.A. Shay, J.F. Drake, R.E. Denton, D. Biskamp, Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. 103(A5), 9165–9176 (1998). ISBN:0148-0227

    Google Scholar 

  • M.A. Shay, J.F. Drake, B.N. Rogers, R.E. Denton, Alfvénic collisionless magnetic reconnection and the hall term. J. Geophys. Res. Space Phys. 106(A3), 3759–3772 (2001)

    Article  ADS  Google Scholar 

  • M.A. Shay, J.F. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 155002 (2007)

    Article  ADS  Google Scholar 

  • M.A. Shay, J.F. Drake, J.P. Eastwood, T.D. Phan, Super-Alfvénic propagation of substorm reconnection signatures and poynting flux. Phys. Rev. Lett. 107, 065001 (2011)

    Article  ADS  Google Scholar 

  • M.A. Shay, C.C. Haggerty, T.D. Phan, J.F. Drake, P.A. Cassak, P. Wu, M. Oieroset, M. Swisdak, K. Malakit, Electron heating during magnetic reconnection: a simulation scaling study. Phys. Plasmas 21(12), 122902 (2014)

    Google Scholar 

  • A.Y. Shih, R.P. Lin, D.M. Smith, Rhessi observations of the proportional acceleration of relativistic > 0.3 mev electrons and > 30 mev protons in solar flares. Astrophys. J. Lett. 698(2), 152 (2009)

    Google Scholar 

  • M.I. Sitnov, M. Swisdak, A.V. Divin, Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res. Space Phys. 114(A4), 04202 (2009)

    Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70(17), 4219–4226 (1965)

    Article  ADS  Google Scholar 

  • L. Spitzer, Physics of Fully Ionized Gases, 2nd edn. (Interscience Publishers, New York, 1962)

    Google Scholar 

  • A. Stark, W. Fox, J. Egedal, O. Grulke, T. Klinger, Laser-induced fluorescence measurement of the ion-energy-distribution function in a collisionless reconnection experiment. Phys. Rev. Lett. 95, 235005 (2005)

    Article  ADS  Google Scholar 

  • R.L. Stenzel, W. Gekelman, N. Wild, Magnetic field line reconnection experiments, 4. Resistivity, heating, and energy flow. J. Geophys. Res. 87(A1), 111–117 (1982)

    Google Scholar 

  • P. Sweet, Electromagnetic Phenomena in Cosmical Physics (Cambridge University Press, New York, 1958), p. 123

    Google Scholar 

  • J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741–763 (1986)

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, R.M. Kulsrud, Physical origin of the quadrupole out-of-plane magnetic field in hall-magnetohydrodynamic reconnection. Phys. Plasmas 13(6), 062305 (2006)

    Google Scholar 

  • J.R. Wygant, C.A. Carttell, R. Lysak, Y. Song, J. Dombeck, J. McFadden, F.S. Mozer, C.W. Carlson, G. Parks, E.A. Lucek, A. Balogh, M. Andre, H. Reme, M. Hesse, C. Mouikis, Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res. 110, 09206 (2005)

    Article  Google Scholar 

  • M. Yamada, Progress in understanding magnetic reconnection in laboratory and space astrophysical plasmas. Phys. Plasmas 14(5), 058102 (2007)

    Google Scholar 

  • M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai, F.W. Perkins, Magnetic reconnection of plasma toroids with cohelicity and counterhelicity. Phys. Rev. Lett. 65, 721–724 (1990)

    Article  ADS  Google Scholar 

  • M. Yamada, Y. Ren, H. Ji, J. Breslau, S. Gerhardt, R. Kulsrud, A. Kuritsyn, Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality. Phys. Plasmas 13(5), 052119 (2006)

    Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010)

    Article  ADS  Google Scholar 

  • M. Yamada, J. Yoo, J. Jara-Almonte, H. Ji, R.M. Kulsrud, C.E. Myers, Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nature communications 5, 4474 (2014)

    Google Scholar 

  • M. Yamada, J. Yoo, J. Jara-Almonte, W. Daughton, H. Ji, R.M. Kulsrud, C.E. Myers, Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma. Phys. Plasmas 22(5), 056501 (2015)

    Google Scholar 

  • J. Yoo, M. Yamada, H. Ji, C.E. Myers, Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 110, 215007 (2013)

    Article  ADS  Google Scholar 

  • J. Yoo, M. Yamada, H. Ji, J. Jara-Almonte, C.E. Myers, Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma. Phys. Plasmas 21(5), 055706 (2014a)

    Google Scholar 

  • J. Yoo, M. Yamada, H. Ji, J. Jara-Almonte, C.E. Myers, L.-J. Chen, Laboratory study of magnetic reconnection with a density asymmetry across the current sheet. Phys. Rev. Lett. 113, 095002 (2014b)

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hesse, A. Klimas, C. Black, M. Kuznetsova, The inner structure of collisionless magnetic reconnection: the electron-frame dissipation measure and hall fields. Phys. Plasmas 18(12), 122108 (2011a)

    Google Scholar 

  • S. Zenitani, M. Hesse, A. Klimas, M. Kuznetsova, New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett. 106, 195003 (2011b)

    Article  ADS  Google Scholar 

  • S. Zenitani, I. Shinohara, T. Nagai, T. Wada, Kinetic aspects of the ion current layer in a reconnection outflow exhaust. Phys. Plasmas 20(9), 092120 (2013)

    Google Scholar 

  • V.V. Zharkova, K. Arzner, A.O. Benz, P. Browning, C. Dauphin, A.G. Emslie, L. Fletcher, E.P. Kontar, G. Mann, M. Onofri, V. Petrosian, R. Turkmani, N. Vilmer, L. Vlahos, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357–420 (2011)

    Article  ADS  Google Scholar 

  • E.G. Zweibel, M. Yamada, Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47(1), 291–332 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Jonathan Jara-Almonte for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamada, M., Yoo, J., Zenitani, S. (2016). Energy Conversion and Inventory of a Prototypical Magnetic Reconnection layer. In: Gonzalez, W., Parker, E. (eds) Magnetic Reconnection. Astrophysics and Space Science Library, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-26432-5_4

Download citation

Publish with us

Policies and ethics