Skip to main content

Radiative Magnetic Reconnection in Astrophysics

  • Chapter
  • First Online:
Magnetic Reconnection

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 427))

Abstract

In this chapter we review a new and rapidly growing area of research in high-energy plasma astrophysics—radiative magnetic reconnection, defined here as a regime of reconnection where radiation reaction has an important influence on the reconnection dynamics, energetics, and/or nonthermal particle acceleration. This influence be may be manifested via a variety of radiative effects that are critical in many high-energy astrophysical applications. The most notable radiative effects in astrophysical reconnection include radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. The self-consistent inclusion of these effects into magnetic reconnection theory and modeling sometimes calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool available for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical conditions in a reconnecting system to observable radiative signatures. This chapter presents an overview of our recent theoretical progress in developing basic physical understanding of radiative magnetic reconnection, with a special emphasis on astrophysically most important radiation mechanisms like synchrotron, curvature, and inverse-Compton. The chapter also offers a broad review of key high-energy astrophysical applications of radiative reconnection, illustrated by multiple examples such as: pulsar wind nebulae, pulsar magnetospheres, black-hole accretion-disk coronae and hot accretion flows in X-ray Binaries and Active Galactic Nuclei and their relativistic jets, magnetospheres of magnetars, and Gamma-Ray Bursts. Finally, this chapter discusses the most critical open questions and outlines the directions for future research of this exciting new frontier of magnetic reconnection research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking in weakly collisional plasmas this is not quite correct since the electron and ion outflow patterns are somewhat different, which results in an in-plane current circulation responsible for the quadrupole out-of-plane magnetic field.

References

  • A.A. Abdo, M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R.D. Blandford, E.D. Bloom, E. Bonamente, A.W. Borgland, A. Bouvier, T.J. Brandt, J. Bregeon, A. Brez, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, A. Cannon, P.A. Caraveo, J.M. Casandjian, Ö. Çelik, E. Charles, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, L. Costamante, S. Cutini, F. D’Ammando, C.D. Dermer, A. de Angelis, A. de Luca, F. de Palma, S.W. Digel, E. do Couto e Silva, P.S. Drell, A. Drlica-Wagner, R. Dubois, D. Dumora, C. Favuzzi, S.J. Fegan, E.C. Ferrara, W.B. Focke, P. Fortin, M. Frailis, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, M.H. Grondin, J.E. Grove, S. Guiriec, D. Hadasch, Y. Hanabata, A.K. Harding, K. Hayashi, M. Hayashida, E. Hays, D. Horan, R. Itoh, G. Jóhannesson, A.S. Johnson, T.J. Johnson, D. Khangulyan, T. Kamae, H. Katagiri, J. Kataoka, M. Kerr, J. Knödlseder, M. Kuss, J. Lande, L. Latronico, S.H. Lee, M. Lemoine-Goumard, F. Longo, F. Loparco, P. Lubrano, G.M. Madejski, A. Makeev, M. Marelli, M.N. Mazziotta, J.E. McEnery, P.F. Michelson, W. Mitthumsiri, T. Mizuno, A.A. Moiseev, C. Monte, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, T. Nakamori, M. Naumann-Godo, P.L. Nolan, J.P. Norris, E. Nuss, T. Ohsugi, A. Okumura, N. Omodei, J.F. Ormes, M. Ozaki, D. Paneque, D. Parent, V. Pelassa, M. Pepe, M. Pesce-Rollins, M. Pierbattista, F. Piron, T.A. Porter, S. Rainò, R. Rando, P.S. Ray, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, R.W. Romani, H.F.W. Sadrozinski, D. Sanchez, P.M.S. Parkinson, J.D. Scargle, T.L. Schalk, C. Sgrò, E.J. Siskind, P.D. Smith, G. Spandre, P. Spinelli, M.S. Strickman, D.J. Suson, H. Takahashi, T. Takahashi, T. Tanaka, J.B. Thayer, D.J. Thompson, L. Tibaldo, D.F. Torres, G. Tosti, A. Tramacere, E. Troja, Y. Uchiyama, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, P. Wang, K.S. Wood, Z. Yang, M. Ziegler, Gamma-ray flares from the Crab Nebula. Science 331, 739–742 (2011). doi:10.1126/science.1199705

    Google Scholar 

  • F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovsky, Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics. Phys. Rev. D 66(2), 023005 (2002). doi:10.1103/PhysRevD.66.023005

  • I. Arka, G. Dubus, Pulsed high-energy γ-rays from thermal populations in the current sheets of pulsar winds. Astron. Astrophys. 550, A101 (2013). doi:10.1051/0004-6361/201220110

    Article  ADS  Google Scholar 

  • W.I. Axford, Magnetic storm effects associated with the tail of the magnetosphere. Space Sci. Rev. 7, 149–157 (1967). doi:10.1007/BF00215592

    Article  ADS  Google Scholar 

  • M. Balbo, R. Walter, C. Ferrigno, P. Bordas, Twelve-hour spikes from the Crab pevatron. Astron. Astrophys. 527, L4 (2011). doi:10.1051/0004-6361/201015980

    Article  ADS  Google Scholar 

  • W. Bednarek, W. Idec, On the variability of the GeV and multi-TeV gamma-ray emission from the Crab Nebula. Mon. Not. R. Astron. Soc. 414, 2229–2234 (2011). doi:10.1111/j.1365-2966.2011.18539.x

    Article  ADS  Google Scholar 

  • N. Bessho, A. Bhattacharjee, Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys. J. 750, 129 (2012). doi:10.1088/0004-637X/750/2/129

    Article  ADS  Google Scholar 

  • A. Bhattacharjee, Y. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi:10.1063/1.3264103

    Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720 (2001). doi:10.1029/1999JA900449

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  • G.R. Blumenthal, R.J. Gould, bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237–271 (1970). doi:10.1103/RevModPhys.42.237

    Google Scholar 

  • R. Buehler, J.D. Scargle, R.D. Blandford, L. Baldini, M.G. Baring, A. Belfiore, E. Charles, J. Chiang, F. D’Ammando, C.D. Dermer, S. Funk, J.E. Grove, A.K. Harding, E. Hays, M. Kerr, F. Massaro, M.N. Mazziotta, R.W. Romani, P.M. Saz Parkinson, A.F. Tennant, M.C. Weisskopf, Gamma-ray activity in the crab Nebula: the exceptional flare of 2011 April. Astrophys. J. 749, 26 (2012). doi:10.1088/0004-637X/749/1/26

    Google Scholar 

  • R. Bühler, R. Blandford, The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77(6), 066901 (2014). doi:10.1088/0034-4885/77/6/066901

    Google Scholar 

  • A.M. Bykov, G.G. Pavlov, A.V. Artemyev, Y.A. Uvarov, Twinkling pulsar wind nebulae in the synchrotron cut-off regime and the γ-ray flares in the Crab Nebula. Mon. Not. R. Astron. Soc. 421, L67–L71 (2012). doi:10.1111/j.1745-3933.2011.01208.x

    Article  ADS  Google Scholar 

  • B. Cerutti, D.A. Uzdensky, M.C. Begelman, Extreme particle acceleration in magnetic reconnection layers: application to the Gamma-ray flares in the Crab Nebula. Astrophys. J. 746, 148 (2012a). doi:10.1088/0004-637X/746/2/148

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Beaming and rapid variability of high-energy radiation from relativistic pair plasma reconnection. Astrophys. J. Lett. 754, L33 (2012b). doi:10.1088/2041-8205/754/2/L33

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147 (2013). doi:10.1088/0004-637X/770/2/147

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection? Phys. Plasmas 21(5), 056501 (2014a). doi:10.1063/1.4872024

    Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys. J. 782, 104 (2014b). doi:10.1088/0004-637X/782/2/104

    Article  ADS  Google Scholar 

  • B. Cerutti, A. Philippov, K. Parfrey, A. Spitkovsky, Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 448, 606–619 (2015). doi:10.1093/mnras/stv042

    Article  ADS  Google Scholar 

  • I.V. Chugunov, V.I. Eidman, E.V. Suvorov, The motion of charged particles in a strong electromagnetic field and curvature radiation. Astrophys. Space Sci. 32, L7–L10 (1975). doi:10.1007/BF00646233

    Article  ADS  Google Scholar 

  • E. Clausen-Brown, M. Lyutikov, Crab Nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426, 1374–1384 (2012). doi:10.1111/j.1365-2966.2012.21349.x

    Article  ADS  Google Scholar 

  • I. Contopoulos, The role of reconnection in the pulsar magnetosphere. Astron. Astrophys. 466, 301–307 (2007). doi:10.1051/0004-6361:20065973

    Article  ADS  MATH  Google Scholar 

  • F.V. Coroniti, Magnetically striped relativistic magnetohydrodynamic winds - the Crab Nebula revisited. Astrophys. J. 349, 538–545 (1990). doi:10.1086/168340

    Article  ADS  Google Scholar 

  • E.M. de Gouveia dal Pino, A. Lazarian, Production of the large scale superluminal ejections of the microquasar GRS 1915+105 by violent magnetic reconnection. Astron. Astrophys. 441, 845–853 (2005). doi:10.1051/0004-6361:20042590

  • E.M. de Gouveia Dal Pino, P.P. Piovezan, L.H.S. Kadowaki, The role of magnetic reconnection on jet/accretion disk systems. Astron. Astrophys. 518, A5 (2010). doi:10.1051/0004-6361/200913462

    Google Scholar 

  • O.C. de Jager, A.K. Harding, P.F. Michelson, H.I. Nel, P.L. Nolan, P. Sreekumar, D.J. Thompson, Gamma-Ray Observations of the Crab Nebula: a study of the synchro-compton spectrum. Astrophys. J. 457, 253 (1996). doi:10.1086/176726

    Article  ADS  Google Scholar 

  • T. Di Matteo, Magnetic reconnection: flares and coronal heating in active galactic nuclei. Mon. Not. R. Astron. Soc. 299, L15 (1998). doi:10.1046/j.1365-8711.1998.01950.x

    Article  ADS  Google Scholar 

  • T. Di Matteo, A. Celotti, A.C. Fabian, Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: the case of GX339-4. Mon. Not. R. Astron. Soc. 304, 809–820 (1999). doi:10.1046/j.1365-8711.1999.02375.x

    Google Scholar 

  • Q.L. Dong, S.J. Wang, Q.M. Lu, C. Huang, D.W. Yuan, X. Liu, X.X. Lin, Y.T. Li, H.G. Wei, J.Y. Zhong, J.R. Shi, S.E. Jiang, Y.K. Ding, B.B. Jiang, K. Du, X.T. He, M.Y. Yu, C.S. Liu, S. Wang, Y.J. Tang, J.Q. Zhu, G. Zhao, Z.M. Sheng, J. Zhang, Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. Phys. Rev. Lett. 108(21), 215001 (2012). doi:10.1103/PhysRevLett.108.215001

  • V.L. Dorman, R.M. Kulsrud, One-dimensional merging of magnetic fields with cooling. Astrophys. J. 449, 777 (1995). doi:10.1086/176097

    Article  ADS  Google Scholar 

  • G. Drenkhahn, H.C. Spruit, Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002). doi:10.1051/0004-6361:20020839

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi:10.1103/PhysRevLett.6.47

    Article  ADS  Google Scholar 

  • G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011). doi:10.1088/0004-637X/743/1/51

    Article  ADS  Google Scholar 

  • G. Fiksel, W. Fox, A. Bhattacharjee, D.H. Barnak, P.Y. Chang, K. Germaschewski, S.X. Hu, P.M. Nilson, Magnetic reconnection between colliding magnetized laser-produced plasma plumes. Phys. Rev. Lett. 113(10), 105003 (2014). doi:10.1103/PhysRevLett.113.105003

  • J. Fish, G. Werner, D. Uzdensky, Effects of synchrotron cooling on relativistic magnetic reconnection (2016, in preparation)

    Google Scholar 

  • W. Fox, A. Bhattacharjee, K. Germaschewski, Fast magnetic reconnection in laser-produced plasma bubbles. Phys. Rev. Lett. 106(21), 215003 (2011). doi:10.1103/PhysRevLett.106.215003

  • W. Fox, A. Bhattacharjee, K. Germaschewski, Magnetic reconnection in high-energy-density laser-produced plasmas. Phys. Plasmas 19(5), 056309 (2012). doi:10.1063/1.3694119

    Google Scholar 

  • A.A. Galeev, R. Rosner, G.S. Vaiana, Structured coronae of accretion disks. Astrophys. J. 229, 318–326 (1979). doi:10.1086/156957

    Article  ADS  Google Scholar 

  • D. Giannios, UHECRs from magnetic reconnection in relativistic jets. Mon. Not. R. Astron. Soc. 408, L46–L50 (2010). doi:10.1111/j.1745-3933.2010.00925.x

    Article  ADS  Google Scholar 

  • D. Giannios, Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 431, 355–363 (2013). doi:10.1093/mnras/stt167

    Article  ADS  Google Scholar 

  • D. Giannios, H.C. Spruit, The role of kink instability in Poynting-flux dominated jets. Astron. Astrophys. 450, 887–898 (2006). doi:10.1051/0004-6361:20054107

    Article  ADS  MATH  Google Scholar 

  • D. Giannios, H.C. Spruit, Spectral and timing properties of a dissipative γ-ray burst photosphere. Astron. Astrophys. 469, 1–9 (2007). doi:10.1051/0004-6361:20066739

    Article  ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 395, L29–L33 (2009). doi:10.1111/j.1745-3933.2009.00635.x

    Article  ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability from misaligned minijets in the jet of M87. Mon. Not. R. Astron. Soc. 402, 1649–1656 (2010). doi:10.1111/j.1365-2966.2009.16045.x

    Article  ADS  Google Scholar 

  • J. Goodman, D. Uzdensky, Reconnection in marginally collisionless accretion disk coronae. Astrophys. J. 688, 555–558 (2008). doi:10.1086/592345

    Article  ADS  Google Scholar 

  • P.W. Guilbert, A.C. Fabian, M.J. Rees, Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593–603 (1983)

    Article  ADS  Google Scholar 

  • F. Guo, H. Li, W. Daughton, Y.H. Liu, formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113(15), 155005 (2014). doi:10.1103/PhysRevLett.113.155005

  • A.M. Hillas, The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984). doi:10.1146/annurev.aa.22.090184.002233

    Article  ADS  Google Scholar 

  • M. Hoshino, Y. Lyubarsky, Relativistic reconnection and particle acceleration. Space Sci. Rev. 173, 521–533 (2012). doi:10.1007/s11214-012-9931-z

    Article  ADS  Google Scholar 

  • Y. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17(6), 062104 (2010). doi:10.1063/1.3420208

    Google Scholar 

  • J.D. Jackson, Classical Electrodynamics (1975)

    MATH  Google Scholar 

  • C.H. Jaroschek, M. Hoshino, Radiation-dominated relativistic current sheets. Phys. Rev. Lett. 103(7), 075002 (2009). doi:10.1103/PhysRevLett.103.075002

  • C.H. Jaroschek, H. Lesch, R.A. Treumann, Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys. J. Lett. 605, L9–L12 (2004a). doi:10.1086/420767

    Article  ADS  Google Scholar 

  • C.H. Jaroschek, R.A. Treumann, H. Lesch, M. Scholer, Fast reconnection in relativistic pair plasmas: analysis of particle acceleration in self-consistent full particle simulations. Phys. Plasmas 11, 1151–1163 (2004b). doi:10.1063/1.1644814

    Article  ADS  Google Scholar 

  • L.H.S. Kadowaki, E.M. de Gouveia Dal Pino, C.B. Singh, The role of fast magnetic reconnection on the radio and Gamma-ray emission from the nuclear regions of microquasars and low luminosity AGNs. Astrophys. J. 802, 113 (2015). doi:10.1088/0004-637X/802/2/113

    Google Scholar 

  • D. Kagan, M. Milosavljević, A. Spitkovsky, A flux rope network and particle acceleration in three-dimensional relativistic magnetic reconnection. Astrophys. J. 774, 41 (2013). doi:10.1088/0004-637X/774/1/41

    Article  ADS  Google Scholar 

  • B. Khiali, E.M. de Gouveia Dal Pino, M.V. del Valle, A magnetic reconnection model for explaining the multiwavelength emission of the microquasars Cyg X-1 and Cyg X-3. Mon. Not. R. Astron. Soc. 449, 34–48 (2015a). doi:10.1093/mnras/stv248

    Google Scholar 

  • B. Khiali, E.M. de Gouveia Dal Pino, H. Sol, Particle acceleration and Gamma-ray emission due to magnetic reconnection in the core region of radio galaxies. ArXiv e-prints (2015b)

    Google Scholar 

  • J.G. Kirk, Particle acceleration in relativistic current sheets. Phys. Rev. Lett. 92(18), 181101 (2004). doi:10.1103/PhysRevLett.92.181101

  • J.G. Kirk, O. Skjæraasen, Dissipation in Poynting-flux-dominated flows: the \(\sigma\)-problem of the Crab pulsar wind. Astrophys. J. 591, 366–379 (2003). doi:10.1086/375215

    Article  ADS  Google Scholar 

  • S.S. Komissarov, M. Lyutikov, On the origin of variable gamma-ray emission from the Crab Nebula. Mon. Not. R. Astron. Soc. 414, 2017–2028 (2011). doi:10.1111/j.1365-2966.2011.18516.x

    Article  ADS  Google Scholar 

  • G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Numerical tests of fast reconnection in weakly stochastic magnetic fields. Astrophys. J. 700, 63–85 (2009). doi:10.1088/0004-637X/700/1/63

    Article  ADS  Google Scholar 

  • S. Krucker, H.S. Hudson, L. Glesener, S.M. White, S. Masuda, J.P. Wuelser, R.P. Lin, Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108–1119 (2010). doi:10.1088/0004-637X/714/2/1108

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (1971)

    Google Scholar 

  • D.A. Larrabee, R.V.E. Lovelace, M.M. Romanova, Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586, 72–78 (2003). doi:10.1086/367640

    Article  ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). doi:10.1086/307233

    Article  ADS  Google Scholar 

  • J.E. Leake, V.S. Lukin, M.G. Linton, Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas 20(6), 061202 (2013). doi:10.1063/1.4811140

    Google Scholar 

  • S.V. Lebedev, F. Suzuki-Vidal, L.A. Pickworth, G.F. Swadling, G. Burdiak, J. Skidmore, G.N. Hall, M. Bennett, S.N. Bland, J.P. Chittenden, P. de Grouchy, J. Derrick, J. Hare, T. Parker, F. Sciortino, L. Suttle, A. Ciardi, R. Rodriguez, J.M. Gil, G. Espinosa, E. Hansen, A. Frank, J. Music, Magnetized jets and shocks in radial foil Z-pinches: experiments and numerical simulations, in APS Meeting Abstracts, p. 8107P (2014)

    Google Scholar 

  • H. Lesch, G.T. Birk, On the origin of extended nonthermal optical emission in extragalactic jets. Astrophys. J. 499, 167–171 (1998). doi:10.1086/305639

    Article  ADS  Google Scholar 

  • C.K. Li, F.H. Séguin, J.A. Frenje, J.R. Rygg, R.D. Petrasso, R.P.J. Town, O.L. Landen, J.P. Knauer, V.A. Smalyuk, Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. Phys. Rev. Lett. 99(5), 055001 (2007). doi:10.1103/PhysRevLett.99.055001

  • B.F. Liu, S. Mineshige, K. Ohsuga, Spectra from a magnetic reconnection-heated corona in active galactic nuclei. Astrophys. J. 587, 571–579 (2003). doi:10.1086/368282

    Article  ADS  Google Scholar 

  • W. Liu, H. Li, L. Yin, B.J. Albright, K.J. Bowers, E.P. Liang, Particle energization in 3D magnetic reconnection of relativistic pair plasmas. Phys. Plasmas 18(5), 052105 (2011). doi:10.1063/1.3589304

    Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi:10.1063/1.2783986

    Google Scholar 

  • N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. Lett. 399, L146–L150 (2009). doi:10.1111/j.1745-3933.2009.00742.x

    Article  ADS  Google Scholar 

  • N.F. Loureiro, R. Samtaney, A.A. Schekochihin, D.A. Uzdensky, Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Phys. Plasmas 19(4), 042303 (2012). doi:10.1063/1.3703318

    Google Scholar 

  • Y.E. Lyubarskii, A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996)

    ADS  Google Scholar 

  • Y.E. Lyubarskii, A model for the energetic emission from pulsars. in IAU Colloq. 177: Pulsar Astronomy - 2000 and Beyond, ed. by M. Kramer, N. Wex, R. Wielebinski Astronomical Society of the Pacific Conference Series, vol. 202, p. 439 (2000)

    Google Scholar 

  • Y.E. Lyubarsky, Highly magnetized region in pulsar wind nebulae and origin of the Crab gamma-ray flares. Mon. Not. R. Astron. Soc. 427, 1497–1502 (2012). doi:10.1111/j.1365-2966.2012.22097.x

    Article  ADS  Google Scholar 

  • Y. Lyubarsky, J.G. Kirk, Reconnection in a striped pulsar wind. Astrophys. J. 547, 437–448 (2001). doi:10.1086/318354

    Article  ADS  Google Scholar 

  • Y. Lyubarsky, M. Liverts, Particle acceleration in the driven relativistic reconnection. Astrophys. J. 682, 1436–1442 (2008). doi:10.1086/589640

    Article  ADS  Google Scholar 

  • M. Lyutikov, Explosive reconnection in magnetars. Mon. Not. R. Astron. Soc. 346, 540–554 (2003a). doi:10.1046/j.1365-2966.2003.07110.x

    Article  ADS  Google Scholar 

  • M. Lyutikov, Role of reconnection in AGN jets. New Astron. Rev. 47, 513–515 (2003b). doi:10.1016/S1387-6473(03)00083-6

    Article  ADS  Google Scholar 

  • M. Lyutikov, Magnetar giant flares and afterglows as relativistic magnetized explosions. Mon. Not. R. Astron. Soc. 367, 1594–1602 (2006a). doi:10.1111/j.1365-2966.2006.10069.x

    Article  ADS  Google Scholar 

  • M. Lyutikov, The electromagnetic model of gamma-ray bursts. New J. Phys. 8, 119 (2006b). doi:10.1088/1367-2630/8/7/119

    Article  ADS  Google Scholar 

  • M. Lyutikov, A high-sigma model of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 405, 1809–1815 (2010). doi:10.1111/j.1365-2966.2010.16553.x

    ADS  Google Scholar 

  • M. Lyutikov, D. Balsara, C. Matthews, Crab GeV flares from the corrugated termination shock. Mon. Not. R. Astron. Soc. 422, 3118–3129 (2012a). doi:10.1111/j.1365-2966.2012.20831.x

    Article  ADS  Google Scholar 

  • M. Lyutikov, N. Otte, A. McCann, The very high energy emission from pulsars: a case for inverse compton scattering. Astrophys. J. 754, 33 (2012b). doi:10.1088/0004-637X/754/1/33

    Article  ADS  Google Scholar 

  • Y. Masada, S. Nagataki, K. Shibata, T. Terasawa, Solar-type magnetic reconnection model for magnetar giant flares. Publ. Astron. Soc. Jpn. 62, 1093– (2010)

    Google Scholar 

  • S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994). doi:10.1038/371495a0

    Article  ADS  Google Scholar 

  • J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. 419, 573–607 (2012). doi:10.1111/j.1365-2966.2011.19721.x

    Article  ADS  Google Scholar 

  • J.C. McKinney, A. Tchekhovskoy, A. Sadowski, R. Narayan, Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure. Mon. Not. R. Astron. Soc. 441, 3177–3208 (2014). doi:10.1093/mnras/stu762

    Article  ADS  Google Scholar 

  • M.V. Medvedev, Theory of “Jitter” radiation from small-scale random magnetic fields and prompt emission from Gamma-ray burst shocks. Astrophys. J. 540, 704–714 (2000). doi:10.1086/309374

    Article  ADS  Google Scholar 

  • M. Melzani, R. Walder, D. Folini, C. Winisdoerffer, J.M. Favre, The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron. Astrophys. 570, A112 (2014). doi:10.1051/0004-6361/201424193

    Article  ADS  Google Scholar 

  • F.C. Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1–66 (1982). doi:10.1103/RevModPhys.54.1

    Article  ADS  Google Scholar 

  • F.C. Michel, Magnetic structure of pulsar winds. Astrophys. J. 431, 397–401 (1994). doi:10.1086/174493

    Article  ADS  Google Scholar 

  • K. Nalewajko, D. Giannios, M.C. Begelman, D.A. Uzdensky, M. Sikora, Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 413, 333–346 (2011). doi:10.1111/j.1365-2966.2010.18140.x

    Article  ADS  Google Scholar 

  • K. Nalewajko, D.A. Uzdensky, B. Cerutti, G.R. Werner, M.C. Begelman, On the distribution of particle acceleration sites in plasmoid-dominated relativistic magnetic reconnection. ArXiv e-prints (2015)

    Google Scholar 

  • L. Ni, B. Kliem, J. Lin, N. Wu, Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability. Astrophys. J. 799, 79 (2015). doi:10.1088/0004-637X/799/1/79

    Article  ADS  Google Scholar 

  • P.M. Nilson, L. Willingale, M.C. Kaluza, C. Kamperidis, S. Minardi, M.S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R.J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R.G. Evans, M.G. Haines, A.E. Dangor, K. Krushelnick, Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97(25), 255001–+ (2006). doi:10.1103/PhysRevLett.97.255001

  • P.M. Nilson, L. Willingale, M.C. Kaluza, C. Kamperidis, S. Minardi, M.S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R.J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R.G. Evans, M.G. Haines, A.E. Dangor, K. Krushelnick, Bidirectional jet formation during driven magnetic reconnection in two-beam laser-plasma interactions. Phys. Plasmas 15(9), 092701 (2008). doi:10.1063/1.2966115

    Google Scholar 

  • M. Oka, S. Ishikawa, P. Saint-Hilaire, S. Krucker, R.P. Lin, Kappa distribution model for hard X-ray coronal sources of solar flares. Astrophys. J. 764, 6 (2013). doi:10.1088/0004-637X/764/1/6

    Article  ADS  Google Scholar 

  • M. Oka, S. Krucker, H.S. Hudson, P. Saint-Hilaire, Electron energy partition in the above-the-looptop solar hard X-ray sources. Astrophys. J. 799, 129 (2015). doi:10.1088/0004-637X/799/2/129

    Article  ADS  Google Scholar 

  • K. Parfrey, A.M. Beloborodov, L. Hui, Twisting, reconnecting magnetospheres and magnetar spindown. Astrophys. J. Lett. 754, L12 (2012). doi:10.1088/2041-8205/754/1/L12

    Article  ADS  Google Scholar 

  • K. Parfrey, A.M. Beloborodov, L. Hui, Dynamics of strongly twisted relativistic magnetospheres. Astrophys. J. 774, 92 (2013). doi:10.1088/0004-637X/774/2/92

    Article  ADS  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957)

    Article  ADS  Google Scholar 

  • G. Paschmann, M. Øieroset, T. Phan, In-Situ observations of reconnection in space. Space Sci. Rev. 178, 385–417 (2013). doi:10.1007/s11214-012-9957-2

    Article  ADS  Google Scholar 

  • J. Pétri, Y. Lyubarsky, Magnetic reconnection at the termination shock in a striped pulsar wind. Astron. Astrophys. 473, 683–700 (2007). doi:10.1051/0004-6361:20066981

    Article  ADS  MATH  Google Scholar 

  • A.A. Philippov, A. Spitkovsky, Ab Initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of axisymmetric pulsars. Astrophys. J. Lett. 785, L33 (2014). doi:10.1088/2041-8205/785/2/L33

    Article  ADS  Google Scholar 

  • A.A. Philippov, A. Spitkovsky, B. Cerutti, Ab Initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. Lett. 801, L19 (2015). doi:10.1088/2041-8205/801/1/L19

    Article  ADS  Google Scholar 

  • L.A. Pozdnyakov, I.M. Sobol, R.A. Syunyaev, Comptonization and the shaping of X-ray source spectra - Monte Carlo calculations. Astrophys. Space Phys. Rev. 2, 189–331 (1983)

    ADS  Google Scholar 

  • R.A. Remillard, J.E. McClintock, X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006). doi:10.1146/annurev.astro.44.051905.092532

    Article  ADS  Google Scholar 

  • M.M. Romanova, R.V.E. Lovelace, Magnetic field, reconnection, and particle acceleration in extragalactic jets. Astron. Astrophys. 262, 26–36 (1992)

    ADS  Google Scholar 

  • G.B. Rybicki, A.P. Lightman, Radiative Processes in Astrophysics (Wiley, New York, 1979)

    Google Scholar 

  • A. Sadowski, R. Narayan, J.C. McKinney, A. Tchekhovskoy, Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 439, 503–520 (2014). doi:10.1093/mnras/stt2479

    Article  ADS  Google Scholar 

  • R. Schopper, H. Lesch, G.T. Birk, Magnetic reconnection and particle acceleration in active galactic nuclei. Astron. Astrophys. 335, 26–32 (1998)

    ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  • K. Shibata, New observational facts about solar flares from YOHKOH studies - evidence of magnetic reconnection and a unified model of flares. Adv. Space Res. 17, 9–18 (1996). doi:10.1016/0273-1177(95)00534-L

    Article  ADS  Google Scholar 

  • I.S. Shklovskii, On the nature of the optical emission from the Crab Nebula. Sov. Astron. 1, 690 (1957)

    ADS  Google Scholar 

  • I.S. Shklovskii, Cosmic radio waves (1960)

    Book  Google Scholar 

  • I.S. Shklovskii, Remarks on the synchrotron-radiation spectrum of the Crab Nebula. Sov. Astron. 10, 6 (1966)

    ADS  Google Scholar 

  • J.S. Shklovsky, Emission of radio-waves by the galaxy and the sun. Nature 159, 752–753 (1947). doi:10.1038/159752a0

    Article  ADS  Google Scholar 

  • C.B. Singh, E.M. de Gouveia Dal Pino, L.H.S. Kadowaki, On the role of fast magnetic reconnection in accreting black hole sources. Astrophys. J. Lett. 799, L20 (2015). doi:10.1088/2041-8205/799/2/L20

    Google Scholar 

  • L. Sironi, A. Spitkovsky, Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011). doi:10.1088/0004-637X/741/1/39

    Article  ADS  Google Scholar 

  • L. Sironi, A. Spitkovsky, Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014). doi:10.1088/2041-8205/783/1/L21

    Article  ADS  Google Scholar 

  • H.C. Spruit, F. Daigne, G. Drenkhahn, Large scale magnetic fields and their dissipation in GRB fireballs. Astron. Astrophys. 369, 694–705 (2001). doi:10.1051/0004-6361:20010131

    Article  ADS  Google Scholar 

  • R.S. Steinolfson, G. van Hoven, Radiative tearing - magnetic reconnection on a fast thermal-instability time scale. Astrophys. J. 276, 391–398 (1984). doi:10.1086/161623

    Article  ADS  Google Scholar 

  • E. Striani, M. Tavani, G. Piano, I. Donnarumma, G. Pucella, V. Vittorini, A. Bulgarelli, A. Trois, C. Pittori, F. Verrecchia, E. Costa, M. Weisskopf, A. Tennant, A. Argan, G. Barbiellini, P. Caraveo, M. Cardillo, P.W. Cattaneo, A.W. Chen, G. De Paris, E. Del Monte, G. Di Cocco, Y. Evangelista, A. Ferrari, M. Feroci, F. Fuschino, M. Galli, F. Gianotti, A. Giuliani, C. Labanti, I. Lapshov, F. Lazzarotto, F. Longo, M. Marisaldi, S. Mereghetti, A. Morselli, L. Pacciani, A. Pellizzoni, F. Perotti, P. Picozza, M. Pilia, M. Rapisarda, A. Rappoldi, S. Sabatini, P. Soffitta, M. Trifoglio, S. Vercellone, F. Lucarelli, P. Santolamazza, P. Giommi, The Crab Nebula super-flare in 2011 April: extremely fast particle acceleration and Gamma-ray emission. Astrophys. J. Lett. 741, L5 (2011). doi:10.1088/2041-8205/741/1/L5

    Article  ADS  Google Scholar 

  • P.A. Sturrock, A model of pulsars. Astrophys. J. 164, 529 (1971). doi:10.1086/150865

    Article  ADS  Google Scholar 

  • P. Sturrock, M.J. Aschwanden, Flares in the Crab Nebula driven by untwisting magnetic fields. Astrophys. J. Lett. 751, L32 (2012). doi:10.1088/2041-8205/751/2/L32

    Article  ADS  Google Scholar 

  • L. Suttle, S. Lebedev, G. Swadling, F. Suzuki-Vidal, G. Burdiak, M. Bennett, J. Hare, D. Burgess, A. Clemens, N. Niasse, J. Chittenden, R. Smith, S. Bland, S. Patankar, N. Stuart, An experimental investigation of the collision of counter-streaming magnetized plasma flows with oppositely aligned embedded magnetic fields, in APS Meeting Abstracts, p. 5007 (2014)

    Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert. IAU Symposium, vol. 6, p. 123 (1958)

    Google Scholar 

  • H.R. Takahashi, K. Ohsuga, A numerical treatment of anisotropic radiation fields coupled with relativistic resistive magnetofluids. Astrophys. J. 772, 127 (2013). doi:10.1088/0004-637X/772/2/127

    Article  ADS  Google Scholar 

  • H.R. Takahashi, K. Ohsuga, Numerical study of relativistic magnetohydrodynamic reconnection and its radiative effects, in Thirteenth Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories, ed. by K. Rosquist, pp. 2344–2345 (2015). doi:10.1142/9789814623995_0437

  • M. Tavani, A. Bulgarelli, V. Vittorini, A. Pellizzoni, E. Striani, P. Caraveo, M.C. Weisskopf, A. Tennant, G. Pucella, A. Trois, E. Costa, Y. Evangelista, C. Pittori, F. Verrecchia, E. Del Monte, R. Campana, M. Pilia, A. De Luca, I. Donnarumma, D. Horns, C. Ferrigno, C.O. Heinke, M. Trifoglio, F. Gianotti, S. Vercellone, A. Argan, G. Barbiellini, P.W. Cattaneo, A.W. Chen, T. Contessi, F. D’Ammando, G. DeParis, G. Di Cocco, G. Di Persio, M. Feroci, A. Ferrari, M. Galli, A. Giuliani, M. Giusti, C. Labanti, I. Lapshov, F. Lazzarotto, P. Lipari, F. Longo, F. Fuschino, M. Marisaldi, S. Mereghetti, E. Morelli, E. Moretti, A. Morselli, L. Pacciani, F. Perotti, G. Piano, P. Picozza, M. Prest, M. Rapisarda, A. Rappoldi, A. Rubini, S. Sabatini, P. Soffitta, E. Vallazza, A. Zambra, D. Zanello, F. Lucarelli, P. Santolamazza, P. Giommi, L. Salotti, G.F. Bignami, Discovery of powerful gamma-ray flares from the Crab Nebula. Science 331, 736– (2011). doi:10.1126/science.1200083

    Google Scholar 

  • S. Tsuneta, Structure and dynamics of magnetic reconnection in a solar flare. Astrophys. J. 456, 840 (1996). doi:10.1086/176701

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, Magnetic reconnection in astrophysical systems. ArXiv Astrophysics e-prints (2006)

    Google Scholar 

  • D.A. Uzdensky, On the physical interpretation of Malyshkin’s (2008) model of resistive Hall magnetohydrodynamic reconnection. Phys. Plasmas 16(4), 040702 (2009). doi:10.1063/1.3125819

    Google Scholar 

  • D.A. Uzdensky, Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 45–71 (2011). doi:10.1007/s11214-011-9744-5

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, B. Cerutti, M.C. Begelman, Reconnection-powered linear accelerator and Gamma-ray flares in the Crab Nebula. Astrophys. J. Lett. 737, L40 (2011). doi:10.1088/2041-8205/737/2/L40

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, J. Goodman, Statistical description of a magnetized corona above a turbulent accretion disk. Astrophys. J. 682, 608–629 (2008). doi:10.1086/588812

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, J.C. McKinney, Magnetic reconnection with radiative cooling. I. Optically thin regime. Phys. Plasmas 18(4), 042105 (2011). doi:10.1063/1.3571602

    Google Scholar 

  • D.A. Uzdensky, S. Rightley, Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77(3), 036902 (2014). doi:10.1088/0034-4885/77/3/036902

    Google Scholar 

  • D.A. Uzdensky, A. Spitkovsky, Physical conditions in the reconnection layer in pulsar magnetospheres. Astrophys. J. 780, 3 (2014). doi:10.1088/0004-637X/780/1/3

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105(23), 235002 (2010). doi:10.1103/PhysRevLett.105.235002

  • R.F. van Oss, G.H.J. van den Oord, M. Kuperus, Accretion disk flares in energetic radiation fields - A model for hard X-rays from black hole candidates. Astron. Astrophys. 270, 275–287 (1993)

    ADS  Google Scholar 

  • V.M. Vasyliunas, Theoretical models of magnetic field line merging. I. Rev. Geophys. Space Phys. 13, 303–336 (1975). doi:10.1029/RG013i001p00303

    Article  ADS  Google Scholar 

  • G. Werner, M. Begelman, B. Cerutti, K. Nalewajko, D. Uzdensky, The effect of mass ratio in relativistic, collisionless electron-ion reconnection, in APS Meeting Abstracts, p. 5003 (2013)

    Google Scholar 

  • G.R. Werner, D.A. Uzdensky, B. Cerutti, K. Nalewajko, M.C. Begelman, The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. ArXiv e-prints (2014)

    Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010). doi:10.1103/RevModPhys.82.603

    Article  ADS  Google Scholar 

  • T. Yokoyama, K. Shibata, Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun. Nature 375, 42–44 (1995). doi:10.1038/375042a0

    Article  ADS  Google Scholar 

  • T. Yokoyama, K. Akita, T. Morimoto, K. Inoue, J. Newmark, Clear evidence of reconnection inflow of a solar flare. Astrophys. J. Lett. 546, L69–L72 (2001). doi:10.1086/318053

    Article  ADS  Google Scholar 

  • C. Yu, Magnetar giant flares—flux rope eruptions in multipolar magnetospheric magnetic fields. Astrophys. J. 757, 67 (2012). doi:10.1088/0004-637X/757/1/67

    Article  ADS  Google Scholar 

  • Q. Yuan, P.F. Yin, X.F. Wu, X.J. Bi, S. Liu, B. Zhang, A statistical model for the γ-ray variability of the Crab Nebula. Astrophys. J. Lett. 730, L15 (2011). doi:10.1088/2041-8205/730/2/L15

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, L63–L66 (2001). doi:10.1086/337972

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field. Phys. Rev. Lett. 95(9), 095001 (2005). doi:10.1103/PhysRevLett.95.095001

  • S. Zenitani, M. Hoshino, Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670, 702–726 (2007). doi:10.1086/522226

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677, 530–544 (2008). doi:10.1086/528708

    Article  ADS  Google Scholar 

  • V.V. Zheleznyakov, Electromagnetic waves in cosmic plasma. Generation and propagation (1977)

    Google Scholar 

  • E.G. Zweibel, M. Yamada, Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291–332 (2009). doi:10.1146/annurev-astro-082708-101726

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am very grateful to the organizers of the Parker Workshop on Magnetic Reconnection in Brazil, March 2014, and especially to Dr. Walter Gonzalez. I am also indebted to Prof. Eugene Parker for being a constant shining inspiration.

I am also grateful to numerous colleagues for many stimulating and insightful conversations over many years on various topics discussed in this chapter. Specifically, I would like to thank M. Begelman, A. Beloborodov, A. Bhattacharjee, B. Cerutti, W. Daughton, E. de Gouveia dal Pino, J. Drake, D. Giannios, J. Goodman, R. Kulsrud, H. Li, N. Loureiro, Yu. Lyubarsky, M. Lyutikov, J. McKinney, M. Medvedev, K. Nalewajko, A. Spitkovsky, and G. Werner.

This work has been supported by NSF Grants PHY-0903851 and AST-1411879, DOE Grants DE-SC0008409 and DE-SC0008655, and NASA Grants NNX11AE12G, NNX12AP17G, NNX12AP18G, and NNX13AO83G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Uzdensky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uzdensky, D.A. (2016). Radiative Magnetic Reconnection in Astrophysics. In: Gonzalez, W., Parker, E. (eds) Magnetic Reconnection. Astrophysics and Space Science Library, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-26432-5_12

Download citation

Publish with us

Policies and ethics