Skip to main content

Theory and Applications of Non-relativistic and Relativistic Turbulent Reconnection

  • Chapter
  • First Online:
Magnetic Reconnection

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 427))

Abstract

Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers of the flows. Therefore, the theories intended for describing astrophysical reconnection should not ignore the effects of turbulence. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also the outflows from magnetic reconnection induce turbulence affecting the rate of turbulent reconnection. Thus turbulence must be accounted for any realistic astrophysical reconnection set up. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources and gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach. We also argue that the tearing reconnection transfers to fully turbulent reconnection in 3D astrophysically relevant settings with realistically high Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition, the mean free path of particles can also be constrained by the instabilities developed on the collisionless scales of plasma (see Schekochihin et al. 2009; Lazarian and Beresnyak 2006; Brunetti and Lazarian 2011), while ensures that compressible motions can also survive collisionless damping.

  2. 2.

    Thus, weak turbulence has a limited, i.e. [L i , L i M A 2] inertial range and at small scales it transits into the regime of strong turbulence. We should stress that weak and strong are not the characteristics of the amplitude of turbulent perturbations, but the strength of non-linear interactions (see more discussion in Cho et al. 2003) and small scale Alfvénic perturbations can correspond to a strong Alfvénic cascade.

  3. 3.

    One can obtain the force-free condition from Maxwell’s equations and the energy-momentum equation: \(\partial _{\mu }T_{( f)}^{\nu \mu } = -F_{\nu \mu }J^{\mu } = 0\). Here, F ν μ is the electromagnetic field tensor.

  4. 4.

    The basic idea of the model was first discussed by Sweet and the corresponding paper by Parker refers to the model as “Sweet model”.

  5. 5.

    The magnetic field wandering was discussed for an extended period to explain the diffusion of cosmic rays perpendicular to the mean magnetic field, but, as was shown in Lazarian and Yan (2014), those attempts employed scalings that were erroneous even for the hypothetical Kolmogorov turbulence of magnetic fields, for which they were developed.

  6. 6.

    Incidentally, this can explain the formation of density fluctuations on scales of thousands of AU, that are observed in the ISM.

  7. 7.

    Thus we can expect that the theory of imbalanced relativistic MHD can be also very similar to Beresnyak and Lazarian (2008) model.

  8. 8.

    This may indicates a relation similar to one predicted by Galtier and Banerjee (2011), i.e. that the compressible component is proportional to B 0 2, exists even in relativistic MHD turbulence.

  9. 9.

    Although collisionless reconnection can also provide fast reconnection rate around 0. 3c, it is still unclear if the collisionless reconnection rate can be applied to the MHD scale.

  10. 10.

    We note that this process will also occur in pure turbulent environments, i.e., without the presence of large scale magnetic discontinuities formed by coherent flux tubes of opposite polarity, but in such cases, the absence of the large scale converging flux tubes will also allow for catch-up collisions, where particles lose energy to the magnetic fluctuations rather than gaining. In such a case, the process is more like a second-order Fermi acceleration (Kowal et al. 2012).

  11. 11.

    It was shown in Lazarian and Yan (2014) that the mathematical formulation of the field wandering is an error in the classical papers, but this does not diminish the importance of the idea. In fact, the diffusion perpendicular to magnetic field by charged particles that follow magnetic field lines was an important impetus for one of the authors towards the idea of turbulent reconnection.

References

  • H. Alfvén, On the existence of electromagnetic-hydrodynamic waves. Ark. Astron. 29, 1–7 (1943)

    ADS  MATH  Google Scholar 

  • J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995). doi:10.1086/175515

    Article  ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998). doi:10.1103/RevModPhys.70.1

    Article  ADS  Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002 (2005). doi:10.1103/PhysRevLett.94.215002, physics/0503103

  • K. Beckwith, J.M. Stone, A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser. 193, 6 (2011). doi:10.1088/0067-0049/193/1/6, 1101.3573

    Google Scholar 

  • A. Beresnyak, Comment on Perez et al. [PRX 2, 041005 (2012), arXiv:1209.2011] (2013) [ArXiv e-prints], 1301.7425

    Google Scholar 

  • A. Beresnyak, Reply to comment on “spectra of strong magnetohydrodynamic turbulence from high-resolution simulations” (2014) [ArXiv e-prints], 1410.0957

    Google Scholar 

  • A. Beresnyak, On the parallel spectrum in magnetohydrodynamic turbulence. Astrophys. J. Lett. 801, L9 (2015). doi:10.1088/2041-8205/801/1/L9, 1407.2613

    Google Scholar 

  • A. Beresnyak, A. Lazarian, Strong imbalanced turbulence. Astrophys. J. 682, 1070–1075 (2008). doi:10.1086/589428, 0709.0554

    Google Scholar 

  • A. Beresnyak, A. Lazarian, Scaling laws and diffuse locality of balanced and imbalanced magnetohydrodynamic turbulence. Astrophys. J. Lett. 722, L110–L113 (2010). doi:10.1088/2041-8205/722/1/L110, 1002.2428

    Google Scholar 

  • A. Beresnyak, A. Lazarian, MHD turbulence, turbulent dynamo and applications, in Magnetic Fields in Diffuse Media, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli. Astrophysics and Space Science Library, vol. 407 (Springer, Heidelberg, 2015), p. 163. doi:10.1007/978-3-662-44625-6_8, 1406.1185

    Google Scholar 

  • A. Bhattacharjee, E. Hameiri, Self-consistent dynamolike activity in turbulent plasmas. Phys. Rev. Lett. 57, 206–209 (1986). doi:10.1103/PhysRevLett.57.206

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  • S. Boldyrev, Kolmogorov-Burgers model for star-forming turbulence. Astrophys. J. 569, 841–845 (2002). doi:10.1086/339403, astro-ph/0108300

    Google Scholar 

  • S. Boldyrev, On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. Lett. 626, L37–L40 (2005). doi:10.1086/431649, astro-ph/0503053

    Google Scholar 

  • S. Boldyrev, Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96(11), 115002 (2006). doi:10.1103/PhysRevLett.96.115002, astro-ph/0511290

  • A.H. Boozer, Separation of magnetic field lines. Phys. Plasmas 19(11), 112901 (2012). doi:10.1063/1.4765352

    Google Scholar 

  • A.H. Boozer, Tokamak halo currents. Phys. Plasmas 20(8), 082510 (2013). doi:10.1063/1.4817742

    Google Scholar 

  • A. Brandenburg, A. Lazarian, Astrophysical hydromagnetic turbulence. Space Sci. Rev. 178, 163–200 (2013). doi:10.1007/s11214-013-0009-3, 1307.5496

    Google Scholar 

  • P. Browning, A. Lazarian, Notes on magnetohydrodynamics of magnetic reconnection in turbulent media. Space Sci. Rev. 178, 325–355 (2013). doi:10.1007/s11214-013-0022-6

    Article  ADS  Google Scholar 

  • G. Brunetti, A. Lazarian, Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays. Mon. Not. R. Astron. Soc. 410, 127–142 (2011). doi:10.1111/j.1365-2966.2010.17457.x, 1008.0184

    Google Scholar 

  • L.F. Burlaga, R.P. Lepping, K.W. Behannon, L.W. Klein, F.M. Neubauer, Large-scale variations of the interplanetary magnetic field - Voyager 1 and 2 observations between 1–5 AU. J. Geophys. Res. 87, 4345–4353 (1982). doi:10.1029/JA087iA06p04345

    Article  ADS  Google Scholar 

  • D. Casanova, A. Lazarian, R. Santos-Lima, Magnetic fields in early protostellar disk formation. Astrophys. J. (2016, in press)

    Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the crab flares. Astrophys. J. 770, 147 (2013). doi:10.1088/0004-637X/770/2/147, 1302.6247

    Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Three-dimensional relativistic pair plasma reconnection with radiative feedback in the crab nebula. Astrophys. J. 782, 104 (2014). doi:10.1088/0004-637X/782/2/104, 1311.2605

    Google Scholar 

  • B.D.G. Chandran, AGN-driven convection in galaxy-cluster plasmas. Astrophys. J. 632, 809–820 (2005). doi:10.1086/432596, astro-ph/0506096

    Google Scholar 

  • B.D.G. Chandran, S.C. Cowley, M. Morris, Magnetic flux accumulation at the galactic center and its implications for the strength of the pregalactic magnetic field. Astrophys. J. 528, 723–733 (2000). doi:10.1086/308184

    Article  ADS  Google Scholar 

  • A. Chepurnov, A. Lazarian, Extending the big power law in the sky with turbulence spectra from Wisconsin Hα mapper data. Astrophys. J. 710, 853–858 (2010). doi:10.1088/0004-637X/710/1/853, 0905.4413

    Google Scholar 

  • A. Chepurnov, A. Lazarian, S. Stanimirović, C. Heiles, J.E.G. Peek, Velocity spectrum for H I at high latitudes. Astrophys. J. 714, 1398–1406 (2010). doi:10.1088/0004-637X/714/2/1398, astro-ph/0611462

    Google Scholar 

  • A. Chepurnov, B. Burkhart, A. Lazarian, S. Stanimirovic, The turbulence velocity power spectrum of neutral hydrogen in the small magellanic cloud (2015) [ArXiv e-prints], 1506.03448

    Google Scholar 

  • J. Cho, Simulations of relativistic force-free magnetohydrodynamic turbulence. Astrophys. J. 621, 324–327 (2005). doi:10.1086/427493, astro-ph/0408318

    Google Scholar 

  • J. Cho, Properties of balanced and imbalanced relativistic Alfvénic magnetohydrodynamic turbulence. J. Korean Phys. Soc. 65, 871–875 (2014). doi:10.3938/jkps.65.871

    Article  ADS  Google Scholar 

  • J. Cho, A. Lazarian, Compressible sub-Alfvénic MHD turbulence in low- β plasmas. Phys. Rev. Lett. 88(24), 245001 (2002). doi:10.1103/PhysRevLett.88.245001, astro-ph/0205282

  • J. Cho, A. Lazarian, Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003). doi:10.1046/j.1365-8711.2003.06941.x, astro-ph/0301062

    Google Scholar 

  • J. Cho, A. Lazarian, Imbalanced relativistic force-free magnetohydrodynamic turbulence. Astrophys. J. 780, 30 (2014). doi:10.1088/0004-637X/780/1/30, 1312.6128

    Google Scholar 

  • J. Cho, E.T. Vishniac, The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000). doi:10.1086/309213, astro-ph/0003403

    Google Scholar 

  • J. Cho, A. Lazarian, E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 564, 291–301 (2002). doi:10.1086/324186, astro-ph/0105235

    Google Scholar 

  • J. Cho, A. Lazarian, E.T. Vishniac, MHD turbulence: scaling laws and astrophysical implications, in Turbulence and Magnetic Fields in Astrophysics, ed. by E. Falgarone, T. Passot. Lecture Notes in Physics, vol. 614 (Springer, Berlin, 2003), pp. 56–98, astro-ph/0205286

    Google Scholar 

  • A. Ciaravella, J.C. Raymond The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J. 686, 1372–1382 (2008). doi:10.1086/590655

    Google Scholar 

  • E.M. de Gouveia Dal Pino, G. Kowal, Particle acceleration by magnetic reconnection, in Magnetic Fields in Diffuse Media, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli. Astrophysics and Space Science Library, vol. 407 (Springer, Heidelberg, 2008), p. 373. doi:10.1007/978-3-662-44625-6_13, 1302.4374

    Google Scholar 

  • E.M. de Gouveia Dal Pino, A. Lazarian, Production of the large scale superluminal ejections of the microquasar GRS 1915+105 by violent magnetic reconnection. Astron. Astrophys. 441, 845–853 (2005). doi:10.1051/0004-6361:20042590

  • E.M. de Gouveia Dal Pino, G. Kowal, L.H.S. Kadowaki, P. Piovezan, A. Lazarian, Magnetic field effects near the launching region of astrophysical jets. Int. J. Mod. Phys. D 19, 729–739 (2010a). doi:10.1142/S0218271810016920, 1002.4434

    Google Scholar 

  • E.M. de Gouveia Dal Pino, P.P. Piovezan, L.H.S. Kadowaki, The role of magnetic reconnection on jet/accretion disk systems. Astron. Astrophys. 518, A5 (2010b). doi:10.1051/0004-6361/200913462, 1005.3067

    Google Scholar 

  • E.M. de Gouveia Dal Pino, M.R.M. Leão, R. Santos-Lima, G. Guerrero, G. Kowal, A. Lazarian, Magnetic flux transport by turbulent reconnection in astrophysical flows. Phys. Scr. 86(1), 018401 (2012). doi:10.1088/0031-8949/86/01/018401, 1112.4871

    Google Scholar 

  • E.M. de Gouveia Dal Pino, G. Kowal, A. Lazarian, Fermi acceleration in magnetic reconnection sites, in 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013), ed. by N.V. Pogorelov, E. Audit, G.P. Zank. Astronomical Society of the Pacific Conference Series, vol. 488 (2014), p. 8, 1401.4941

    Google Scholar 

  • P.H. Diamond, M. Malkov, Dynamics of helicity transport and Taylor relaxation. Phys. Plasmas 10, 2322–2329 (2003). doi:10.1063/1.1576390

    Article  ADS  MathSciNet  Google Scholar 

  • W. Dobler, N.E. Haugen, T.A. Yousef, A. Brandenburg, Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68(2), 026304 (2003). doi:10.1103/PhysRevE.68.026304, astro-ph/0303324

  • J.F. Drake, Magnetic explosions in space. Nature 410, 525–526 (2001)

    Article  ADS  Google Scholar 

  • J.F. Drake, M. Swisdak, H. Che, M.A. Shay, Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553–556 (2006). doi:10.1038/nature05116

    Article  ADS  Google Scholar 

  • J.F. Drake, M. Opher, M. Swisdak, J.N. Chamoun, A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963–974 (2010). doi:10.1088/0004-637X/709/2/963, 0911.3098

    Google Scholar 

  • G. Drenkhahn, H.C. Spruit, Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002). doi:10.1051/0004-6361:20020839, astro-ph/0202387

    Google Scholar 

  • L.O. Drury, First-order Fermi acceleration driven by magnetic reconnection. Mon. Not. R. Astron. Soc. 422, 2474–2476 (2002). doi:10.1111/j.1365-2966.2012.20804.x, 1201.6612

    Google Scholar 

  • T.A. Enßlin, C. Vogt, Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 453, 447–458 (2006). doi:10.1051/0004-6361:20053518, astro-ph/0505517

    Google Scholar 

  • G.L. Eyink, Turbulent general magnetic reconnection (2014) [ArXiv e-prints], 1412.2254

    Google Scholar 

  • G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011). doi:10.1088/0004-637X/743/1/51, 1103.1882

    Google Scholar 

  • G. Eyink, E. Vishniac, C. Lalescu, H. Aluie, K. Kanov, K. Bürger, R. Burns, C. Meneveau, A. Szalay, Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence. Nature 497, 466–469 (2013). doi:10.1038/nature12128

    Article  ADS  Google Scholar 

  • M. Fatuzzo, F.C. Adams, Enhancement of ambipolar diffusion rates through field fluctuations. Astrophys. J. 570, 210–221 (2002). doi:10.1086/339502, astro-ph/0201131

    Google Scholar 

  • K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001). doi:10.1103/RevModPhys.73.1031, astro-ph/0106359

    Google Scholar 

  • K. Galsgaard, Å Nordlund, Heating and activity of the solar corona. 3. Dynamics of a low beta plasma with three-dimensional null points. J. Geophys. Res. 102, 231–248 (1997). doi:10.1029/96JA02680

    Google Scholar 

  • S. Galtier, S. Banerjee, Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107(13), 134501 (2011). doi:10.1103/PhysRevLett.107.134501, 1108.4529

  • S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000). doi:10.1017/S0022377899008284, astro-ph/0008148

    Google Scholar 

  • S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, Anisotropic turbulence of shear-Alfvén waves. Astrophys. J. Lett. 564, L49–L52 (2002). doi:10.1086/338791

    Article  ADS  Google Scholar 

  • D. Garrison, P. Nguyen, Characterization of relativistic MHD turbulence (2015) [ArXiv e-prints], 1501.06068

    Google Scholar 

  • C.L. Gerrard, A.W. Hood, Kink unstable coronal loops: current sheets, current saturation and magnetic reconnection. Sol. Phys. 214, 151–169 (2003). doi:10.1023/A:1024053501326

    Article  ADS  Google Scholar 

  • D. Giannios, Prompt GRB emission from gradual energy dissipation. Astron. Astrophys. 480, 305–312 (2008). doi:10.1051/0004-6361:20079085, 0711.2632

    Google Scholar 

  • D. Giannios, UHECRs from magnetic reconnection in relativistic jets. Mon. Not. R. Astron. Soc. 408, L46–L50 (2010). doi:10.1111/j.1745-3933.2010.00925.x, 1007.1522

    Google Scholar 

  • D. Giannios, H.C. Spruit, The role of kink instability in Poynting-flux dominated jets. Astron. Astrophys. 450, 887–898 (2006). doi:10.1051/0004-6361:20054107, astro-ph/0601172

    Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: strong Alfvenic turbulence. Astrophys. J. 438, 763–775 (1995). doi:10.1086/175121

    Google Scholar 

  • J.T. Gosling, Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. Lett. 671, L73–L76 (2007). doi:10.1086/524842

    Article  ADS  Google Scholar 

  • Z.B. Guo, P.H. Diamond, X.G. Wang, Magnetic reconnection, helicity dynamics, and hyper-diffusion. Astrophys. J. 757, 173 (2012). doi:10.1088/0004-637X/757/2/173

    Article  ADS  Google Scholar 

  • F. Guo, Y.H. Liu, W. Daughton, H. Li, Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167 (2015). doi:10.1088/0004-637X/806/2/167, 1504.02193

    Google Scholar 

  • E. Hameiri, A. Bhattacharjee, Turbulent magnetic diffusion and magnetic field reversal. Phys. Fluids 30, 1743–1755 (1987). doi:10.1063/1.866241

    Article  ADS  MATH  Google Scholar 

  • F. Heitsch, E.G. Zweibel, Suppression of fast reconnection by magnetic shear. Astrophys. J. 590, 291–295 (2003). doi:10.1086/375009

    Article  ADS  Google Scholar 

  • F. Heitsch, E.G. Zweibel, A.D. Slyz, J.E.G. Devriendt, Magnetic flux transport in the ISM through turbulent ambipolar diffusion. Astrophys. Space Sci. 292, 45–51 (2004). doi:10.1023/B:ASTR.0000044999.25908.a5

    Article  ADS  MATH  Google Scholar 

  • K. Higashimori, M. Hoshino, The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection. J. Geophys. Res. Space Phys. 117, A01220 (2012). doi:10.1029/2011JA016817, 1201.4213

  • J.C. Higdon, Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. I - model and astrophysical sites. Astrophys. J. 285, 109–123 (1984). doi:10.1086/162481

    Article  Google Scholar 

  • M. Hoshino, Y. Lyubarsky, Relativistic reconnection and particle acceleration. Space Sci. Rev. 173, 521–533 (2012). doi:10.1007/s11214-012-9931-z

    Article  ADS  Google Scholar 

  • T. Inoue, K. Asano, K. Ioka, Three-dimensional simulations of magnetohydrodynamic turbulence behind relativistic shock waves and their implications for gamma-ray bursts. Astrophys. J. 734, 77 (2011). doi:10.1088/0004-637X/734/2/77, 1011.6350

    Google Scholar 

  • P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964)

    ADS  MathSciNet  Google Scholar 

  • C.H. Jaroschek, H. Lesch, R.A. Treumann, Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys. J. Lett. 605, L9–L12 (2004). doi:10.1086/420767

    Article  ADS  Google Scholar 

  • L.H.S. Kadowaki, E.M. de Gouveia Dal Pino, C.B. Singh, The role of fast magnetic reconnection on the radio and gamma-ray emission from the nuclear regions of microquasars and low luminosity AGNs. Astrophys. J. 802, 113 (2015). doi:10.1088/0004-637X/802/2/113, 1410.3454

    Google Scholar 

  • H. Karimabadi, A. Lazarian, Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys. Plasmas 20(11), 112102 (2013). doi:10.1063/1.4828395

    Google Scholar 

  • H. Karimabadi, V. Roytershteyn, H.X. Vu, Y.A. Omelchenko, J. Scudder, W. Daughton, A. Dimmock, K. Nykyri, M. Wan, D. Sibeck, M. Tatineni, A. Majumdar, B. Loring, B. Geveci, The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas 21(6), 062308 (2014). doi:10.1063/1.4882875

    Google Scholar 

  • O. Khabarova, V. Obridko, Puzzles of the interplanetary magnetic field in the inner heliosphere. Astrophys. J. 761, 82 (2012). doi:10.1088/0004-637X/761/2/82, 1204.6672

    Google Scholar 

  • B. Khiali, E.M. de Gouveia Dal Pino, Very high energy neutrino emission from the core of low luminosity AGNs triggered by magnetic reconnection acceleration (2015) [ArXiv e-prints], 1506.01063

    Google Scholar 

  • B. Khiali, E.M. de Gouveia Dal Pino, M.V. del Valle, A magnetic reconnection model for explaining the multiwavelength emission of the microquasars Cyg X-1 and Cyg X-3. Mon. Not. R. Astron. Soc. 449, 34–48 (2015a). doi:10.1093/mnras/stv248, 1406.5664

    Google Scholar 

  • B. Khiali, E.M. de Gouveia Dal Pino, H. Sol, Particle acceleration and gamma-ray emission due to magnetic reconnection in the core region of radio galaxies (2015b) [ArXiv e-prints], 1504.07592

    Google Scholar 

  • E.J. Kim, P.H. Diamond, On turbulent reconnection. Astrophys. J. 556, 1052–1065 (2001). doi:10.1086/321628, astro-ph/0101161

    Google Scholar 

  • S.S. Komissarov, Time-dependent, force-free, degenerate electrodynamics. Mon. Not. R. Astron. Soc. 336, 759–766 (2002). doi:10.1046/j.1365-8711.2002.05313.x, astro-ph/0202447

    Google Scholar 

  • G. Kowal, A. Lazarian, Astrophys. J. 666, L69 (2007)

    Article  ADS  Google Scholar 

  • G. Kowal, A. Lazarian, Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings. Astrophys. J. 720, 742–756 (2010). doi:10.1088/0004-637X/720/1/742, 1003.3697

    Google Scholar 

  • G. Kowal, A. Lazarian, A. Beresnyak, Astrophys. J. 658, 423 (2007)

    Article  ADS  Google Scholar 

  • G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Numerical tests of fast reconnection in weakly stochastic magnetic fields. Astrophys. J. 700, 63–85 (2009). doi:10.1088/0004-637X/700/1/63, 0903.2052

    Google Scholar 

  • G. Kowal, E.M. de Gouveia Dal Pino, A. Lazarian, Magnetohydrodynamic simulations of reconnection and particle acceleration: three-dimensional effects. Astrophys. J. 735, 102 (2011). doi:10.1088/0004-637X/735/2/102, 1103.2984

    Google Scholar 

  • G. Kowal, A. Lazarian, E.T. Vishniac, K. Otmianowska-Mazur, Reconnection studies under different types of turbulence driving. Nonlinear Process. Geophys. 19, 297–314 (2012). doi:10.5194/npg-19-297-2012, 1203.2971

    Google Scholar 

  • G. Kowal, D.A. Falceta-Gon, calves, A. Lazarian, E.T. Vishniac, Turbulence generated by reconnection (2015, preprint)

    Google Scholar 

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965). doi:10.1063/1.1761412

    Article  ADS  MathSciNet  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, P. Padoan, R. Wagner, The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007). doi:10.1086/519443, 0704.3851

    Google Scholar 

  • K. Kulpa-Dybeł, G. Kowal, K. Otmianowska-Mazur, A. Lazarian, E. Vishniac, Reconnection in weakly stochastic B-fields in 2D. Astron. Astrophys. 514, A26 (2010). doi:10.1051/0004-6361/200913218, 0909.1265

    Google Scholar 

  • A. Kupiainen, Nondeterministic dynamics and turbulent transport. Ann. Henri Poincaré 4, 713–726 (2003). doi:10.1007/s00023-003-0957-3

    Article  ADS  MathSciNet  Google Scholar 

  • C.C. Lalescu, K.K. Shi, G.L. Eyink, T.D. Drivas, E.T. Vishniac, A. Lazarian, Inertial-range reconnection in magnetohydrodynamic turbulence and in the solar wind. Phys. Rev. Lett. 115(2), 025001 (2015). doi:10.1103/PhysRevLett.115.025001, 1503.00509

  • G. Lapenta, Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100(23), 235001 (2008). doi:10.1103/PhysRevLett.100.235001, 0805.0426

  • G. Lapenta, L. Bettarini, Spontaneous transition to a fast 3D turbulent reconnection regime. Europhys. Lett. 93, 65001 (2011). doi:10.1209/0295-5075/93/65001, 1102.4791

    Google Scholar 

  • G. Lapenta, A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means. Nonlinear Process. Geophys. 19, 251–263 (2012). doi:10.5194/npg-19-251-2012, 1110.0089

    Google Scholar 

  • A. Lazarian, Astrophysical implications of turbulent reconnection: from cosmic rays to star formation, in Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures, ed. by E.M. de Gouveia dal Pino, G. Lugones, A. Lazarian. American Institute of Physics Conference Series, vol. 784 (American Institute of Physics, New York, 2005), pp. 42–53. doi:10.1063/1.2077170, astro-ph/0505574

  • A. Lazarian, Enhancement and suppression of heat transfer by MHD turbulence. Astrophys. J. Lett. 645, L25–L28 (2006). doi:10.1086/505796, astro-ph/0608045

    Google Scholar 

  • A. Lazarian, Obtaining spectra of turbulent velocity from observations. Space Sci. Rev. 143, 357–385 (2009). doi:10.1007/s11214-008-9460-y, 0811.0839

    Google Scholar 

  • A. Lazarian, Fast reconnection and reconnection diffusion: implications for star formation (2011) [ArXiv e-prints], 1111.0694

    Google Scholar 

  • A. Lazarian, Reconnection diffusion in turbulent fluids and its implications for star formation. Space Sci. Rev. 181, 1–59 (2014). doi:10.1007/s11214-013-0031-5

    Article  ADS  Google Scholar 

  • A. Lazarian, A. Beresnyak, Cosmic ray scattering in compressible turbulence. Mon. Not. R. Astron. Soc. 373, 1195–1202 (2006). doi:10.1111/j.1365-2966.2006.11093.x, astro-ph/0606737

    Google Scholar 

  • A. Lazarian, P. Desiati, Magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail. Astrophys. J. 722, 188–196 (2010). doi:10.1088/0004-637X/722/1/188, 1008.1981

    Google Scholar 

  • A. Lazarian, M.V. Medvedev (2015, preprint)

    Google Scholar 

  • A. Lazarian, M. Opher, A model of acceleration of anomalous cosmic rays by reconnection in the heliosheath. Astrophys. J. 703, 8–21 (2009). doi:10.1088/0004-637X/703/1/8, 0905.1120

    Google Scholar 

  • A. Lazarian, D. Pogosyan, Velocity modification of H I power spectrum. Astrophys. J. 537, 720–748 (2000). doi:10.1086/309040, astro-ph/9901241

    Google Scholar 

  • A. Lazarian, D. Pogosyan, Velocity modification of the power spectrum from an absorbing medium. Astrophys. J. 616, 943–965 (2004). doi:10.1086/422462, astro-ph/0405461

    Google Scholar 

  • A. Lazarian, D. Pogosyan, Studying turbulence using doppler-broadened lines: velocity coordinate spectrum. Astrophys. J. 652, 1348–1365 (2006). doi:10.1086/508012, astro-ph/0511248

    Google Scholar 

  • A. Lazarian, D. Pogosyan, Statistical description of synchrotron intensity fluctuations: studies of astrophysical magnetic turbulence. Astrophys. J. 747, 5 (2012). doi:10.1088/0004-637X/747/1/5, 1105.4617

    Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). doi:10.1086/307233, astro-ph/9811037

    Google Scholar 

  • A. Lazarian, E.T. Vishniac, Model of reconnection of weakly stochastic magnetic field and its implications, in Revista Mexicana de Astronomia y Astrofisica Conference Series, vols. 27, 36 (2009), pp. 81–88, 0812.2019

    Google Scholar 

  • A. Lazarian, H. Yan, Superdiffusion of cosmic rays: implications for cosmic ray acceleration. Astrophys. J. 784, 38 (2014). doi:10.1088/0004-637X/784/1/38, 1308.3244

    Google Scholar 

  • A. Lazarian, V. Petrosian, H. Yan, J. Cho, Physics of gamma-ray bursts: turbulence, energy transfer and reconnection (2003) [ArXiv Astrophysics e-prints] astro-ph/0301181

    Google Scholar 

  • A. Lazarian, E.T. Vishniac, J. Cho, Magnetic field structure and stochastic reconnection in a partially ionized gas. Astrophys. J. 603, 180–197 (2004). doi:10.1086/381383, physics/0311051

    Google Scholar 

  • A. Lazarian, G. Kowal, B. de Gouveia dal Pino, Astrophysical reconnection and particle acceleration, in Numerical Modeling of Space Plasma Slows (ASTRONUM 2011), ed. by N.V. Pogorelov, J.A. Font, E. Audit, G.P. Zank. Astronomical Society of the Pacific Conference Series, vol. 459 (2012), p. 21, 1202.1559

    Google Scholar 

  • A. Lazarian, G.L. Eyink, E.T. Vishniac, G. Kowal, Magnetic reconnection in astrophysical environments, in Magnetic Fields in Diffuse Media, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli. Astrophysics and Space Science Library, vol. 407 (Springer, Heidelberg, 2015a), p. 311. doi:10.1007/978-3-662-44625-6_12, 1407.6356

    Google Scholar 

  • A. Lazarian, G.L. Eyink, E.T. Vishniac, G. Kowal, Turbulent reconnection and its implications. Philos. Trans. R. Soc. Lond. Ser. A 373, 40144 (2015b)

    Article  ADS  Google Scholar 

  • M.R.M. Leão, E.M. de Gouveia Dal Pino, R. Santos-Lima, A. Lazarian, The collapse of turbulent cores and reconnection diffusion. Astrophys. J. 777, 46 (2013). doi:10.1088/0004-637X/777/1/46, 1209.1846

    Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 (1998). doi:10.1029/97JA03394

    Article  ADS  Google Scholar 

  • Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001). doi:10.1086/323470, astro-ph/0106425

    Google Scholar 

  • Y.E. Litvinenko, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997 (1996). doi:10.1086/177213

    Article  ADS  Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi:10.1063/1.2783986, astro-ph/0703631

    Google Scholar 

  • N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, L146–L150 (2009). doi:10.1111/j.1745-3933.2009.00742.x, 0904.0823

    Google Scholar 

  • M. Lyutikov, A. Lazarian, Topics in microphysics of relativistic plasmas. Space Sci. Rev. 178, 459–481 (2013). doi:10.1007/s11214-013-9989-2, 1305.3838

    Google Scholar 

  • J. Maron, P. Goldreich, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175–1196 (2001). doi:10.1086/321413, astro-ph/0012491

    Google Scholar 

  • J. Maron, B.D. Chandran, E. Blackman, Divergence of neighboring magnetic-field lines and fast-particle diffusion in strong magnetohydrodynamic turbulence, with application to thermal conduction in galaxy clusters. Phys. Rev. Lett. 92(4), 045001 (2004). doi:10.1103/PhysRevLett.92.045001, astro-ph/0303217

  • J. Mason, F. Cattaneo, S. Boldyrev, Dynamic alignment in driven magnetohydrodynamic turbulence. Phys. Rev. Lett. 97(25), 255002 (2006). doi:10.1103/PhysRevLett.97.255002, astro-ph/0602382

  • J. Mason, F. Cattaneo, S. Boldyrev, Numerical measurements of the spectrum in magnetohydrodynamic turbulence. Phys. Rev. E 77(3), 036403 (2008). doi:10.1103/PhysRevE.77.036403, 0706.2003

  • W.H. Matthaeus, S.L. Lamkin, Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303–307 (1985). doi:10.1063/1.865147

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, S.L. Lamkin, Turbulent magnetic reconnection. Phys. Fluids 29, 2513–2534 (1986). doi:10.1063/1.866004

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, D.C. Montgomery, M.L. Goldstein, Turbulent generation of outward-traveling interplanetary Alfvenic fluctuations. Phys. Rev. Lett. 51, 1484–1487 (1983). doi:10.1103/PhysRevLett.51.1484

    Article  ADS  Google Scholar 

  • J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. 419, 573–607 (2012). doi:10.1111/j.1365-2966.2011.19721.x, 1011.1904

    Google Scholar 

  • D.L. Meier, Black Hole Astrophysics: The Engine Paradigm (Springer, Berlin, 2012). ISBN: 978-3-642-01935-7

    Book  Google Scholar 

  • A. Merloni, S. Heinz, T. di Matteo, A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003). doi:10.1046/j.1365-2966.2003.07017.x, astro-ph/0305261

    Google Scholar 

  • M.S. Miesch, W.H. Matthaeus, A. Brandenburg, A. Petrosyan, A. Pouquet, C. Cambon, F. Jenko, D. Uzdensky, J. Stone, S. Tobias, J. Toomre, M. Velli, Large-Eddy simulations of magnetohydrodynamic turbulence in astrophysics and space physics (2015) [ArXiv e-prints], 1505.01808

    Google Scholar 

  • P.D. Mininni, A. Pouquet, Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 80(2), 025401 (2009). doi:10.1103/PhysRevE.80.025401, 0903.3265

  • Y. Mizuno, C. Singh, E.M. de Gouveia Dal Pino (2015, in preparation)

    Google Scholar 

  • D. Montgomery, L. Turner, Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field. Phys. Fluids 24, 825–831 (1981). doi:10.1063/1.863455

    Article  ADS  MATH  Google Scholar 

  • W.C. Müller, R. Grappin, Spectral energy dynamics in magnetohydrodynamic turbulence. Phys. Rev. Lett. 95(11), 114502 (2005). doi:10.1103/PhysRevLett.95.114502, physics/0509019

  • R. Narayan, M.V. Medvedev, Self-similar hot accretion on to a spinning neutron star: matching the outer boundary conditions. Mon. Not. R. Astron. Soc. 343, 1007–1012 (2003). doi:10.1046/j.1365-8711.2003.06747.x, astro-ph/0305002

    Google Scholar 

  • R. Narayan, I. Yi, Advection-dominated accretion: underfed black holes and neutron stars. Astrophys. J. 452, 710 (1995). doi:10.1086/176343, astro-ph/9411059

    Google Scholar 

  • C.S. Ng, A. Bhattacharjee, Interaction of shear-Alfven wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845 (1996). doi:10.1086/177468

    Article  ADS  Google Scholar 

  • C.A. Norman, A. Ferrara, The turbulent interstellar medium: generalizing to a scale-dependent phase continuum. Astrophys. J. 467, 280 (1996). doi:10.1086/177603, astro-ph/9602146

    Google Scholar 

  • J.S. Oishi, M.M. Mac Low, D.C. Collins, M. Tamura, Self-generated turbulence in magnetic reconnection (2015) [ArXiv e-prints], 1505.04653

    Google Scholar 

  • P. Padoan, M. Juvela, A. Kritsuk, M.L. Norman, The power spectrum of supersonic turbulence in perseus. Astrophys. J. Lett. 653, L125–L128 (2006). doi:10.1086/510620, astro-ph/0611248

    Google Scholar 

  • P. Padoan, A.G. Kritsuk, T. Lunttila, M. Juvela, A. Nordlund, M.L. Norman, S.D. Ustyugov, MHD turbulence in star-forming clouds, in American Institute of Physics Conference Series, vol. 1242, ed. by G. Bertin, F. de Luca, G. Lodato, R. Pozzoli, M. Romé (2010), pp. 219–230. doi:10.1063/1.3460128

  • P.P. Papadopoulos, W.F. Thi, F. Miniati, S. Viti, Extreme cosmic ray dominated regions: a new paradigm for high star formation density events in the Universe. Mon. Not. R. Astron. Soc. 414, 1705–1714 (2011). doi:10.1111/j.1365-2966.2011.18504.x, 1009.2496

    Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957). doi:10.1029/JZ062i004p00509

    Article  ADS  Google Scholar 

  • E.N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity (Clarendon Press, Oxford/Oxford University Press, New York, 1979), 858 pp

    Google Scholar 

  • J.C. Perez, J. Mason, S. Boldyrev, F. Cattaneo, On the energy spectrum of strong magnetohydrodynamic turbulence. Phys. Rev. X 2(4), 041005 (2012). doi:10.1103/PhysRevX.2.041005, 1209.2011

  • D. Radice, L. Rezzolla, Universality and intermittency in relativistic turbulent flows of a hot plasma. Astrophys. J. Lett. 766, L10 (2013). doi:10.1088/2041-8205/766/1/L10, 1209.2936

    Google Scholar 

  • A.B. Rechester, M.N. Rosenbluth, Electron heat transport in a Tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38–41 (1978). doi:10.1103/PhysRevLett.40.38

    Article  ADS  Google Scholar 

  • G. Rocha da Silva, D. Falceta-Gonçalves, G. Kowal, E.M. de Gouveia Dal Pino, Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows. Mon. Not. R. Astron. Soc. 446, 104–119 (2015). doi:10.1093/mnras/stu2104, 1410.2776

    Google Scholar 

  • R. Santos-Lima, A. Lazarian, E.M. de Gouveia Dal Pino, J. Cho, Diffusion of magnetic field and removal of magnetic flux from clouds via turbulent reconnection. Astrophys. J. 714, 442–461 (2010). doi:10.1088/0004-637X/714/1/442, 0910.1117

    Google Scholar 

  • R. Santos-Lima, E.M. de Gouveia Dal Pino, A. Lazarian, The role of turbulent magnetic reconnection in the formation of rotationally supported protostellar disks. Astrophys. J. 747, 21 (2012). doi:10.1088/0004-637X/747/1/21, 1109.3716

    Google Scholar 

  • R. Santos-Lima, E.M. de Gouveia Dal Pino, A. Lazarian, Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not? Mon. Not. R. Astron. Soc. 429, 3371–3378 (2013). doi:10.1093/mnras/sts597, 1211.1059

    Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009). doi:10.1088/0067-0049/182/1/310, 0704.0044

    Google Scholar 

  • S. Servidio, W.H. Matthaeus, M.A. Shay, P. Dmitruk, P.A. Cassak, M. Wan, Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 17(3), 032315 (2010). doi:10.1063/1.3368798

    Google Scholar 

  • M.A. Shay, J.F. Drake, R.E. Denton, D. Biskamp, Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. 103, 9165–9176 (1998). doi:10.1029/97JA03528

    Article  ADS  Google Scholar 

  • M.A. Shay, J.F. Drake, M. Swisdak, B.N. Rogers, The scaling of embedded collisionless reconnection. Phys. Plasmas 11, 2199–2213 (2004). doi:10.1063/1.1705650

    Article  ADS  Google Scholar 

  • Z.S. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994). doi:10.1103/PhysRevLett.72.336

    Article  ADS  Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983). doi:10.1017/S0022377800000933

    Article  ADS  Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001). astro-ph/0101008

    Google Scholar 

  • F.H. Shu, Ambipolar diffusion in self-gravitating isothermal layers. Astrophys. J. 273, 202–213 (1983). doi:10.1086/161359

    Article  ADS  Google Scholar 

  • C.B. Singh, E.M. de Gouveia Dal Pino, L.H.S. Kadowaki, On the role of fast magnetic reconnection in accreting black hole sources. Astrophys. J. Lett. 799, L20 (2015). doi:10.1088/2041-8205/799/2/L20, 1411.0883

    Google Scholar 

  • L. Sironi, A. Spitkovsky, Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014). doi:10.1088/2041-8205/783/1/L21, 1401.5471

    Google Scholar 

  • S. Stanimirović, A. Lazarian, Velocity and density spectra of the small magellanic cloud. Astrophys. J. Lett. 551, L53–L56 (2001). doi:10.1086/319837, astro-ph/0102191

    Google Scholar 

  • H.R. Strauss, Hyper-resistivity produced by tearing mode turbulence. Phys. Fluids 29, 3668–3671 (1986). doi:10.1063/1.865798

    Article  ADS  MATH  Google Scholar 

  • K. Subramanian, A. Shukurov, N.E.L. Haugen, Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 366, 1437–1454 (2006). doi:10.1111/j.1365-2966.2006.09918.x, astro-ph/0505144

    Google Scholar 

  • P.A. Sweet, The topology of force-free magnetic fields. Observatory 78, 30–32 (1958)

    ADS  Google Scholar 

  • R. Sych, V.M. Nakariakov, M. Karlicky, S. Anfinogentov, Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791–799 (2009). doi:10.1051/0004-6361/200912132, 1005.3594

    Google Scholar 

  • S.I. Syrovatskii, Pinch sheets and reconnection in astrophysics. Annu. Rev. Astron. Astrophys. 19, 163–229 (1981). doi:10.1146/annurev.aa.19.090181.001115

    Article  ADS  Google Scholar 

  • I.V. Sytine, D.H. Porter, P.R. Woodward, S.W. Hodson, K.H. Winkler, Convergence tests for the piecewise parabolic method and Navier-Stokes solutions for homogeneous compressible turbulence. J. Comput. Phys. 158, 225–238 (2000). doi:10.1006/jcph.1999.6416

    Article  ADS  MATH  Google Scholar 

  • M. Takamoto, T. Inoue, A new numerical scheme for resistive relativistic magnetohydrodynamics using method of characteristics. Astrophys. J. 735, 113 (2011). doi:10.1088/0004-637X/735/2/113, 1105.5683

    Google Scholar 

  • M. Takamoto, T. Inoue, A. Lazarian, Turbulent relativistic reconnection. Astrophys. J. 815, 16 (2015)

    Article  ADS  Google Scholar 

  • H. Tennekes, J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, 1972)

    Google Scholar 

  • C. Thompson, O. Blaes, Magnetohydrodynamics in the extreme relativistic limit. Phys. Rev. D 57, 3219–3234 (1998). doi:10.1103/PhysRevD.57.3219

    Article  ADS  MathSciNet  Google Scholar 

  • D.A. Uzdensky, A. Spitkovsky, Physical conditions in the reconnection layer in pulsar magnetospheres. Astrophys. J. 780, 3 (2014). doi:10.1088/0004-637X/780/1/3, 1210.3346

    Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105(23), 235002 (2010). doi:10.1103/PhysRevLett.105.235002, 1008.3330

  • E.T. Vishniac, A. Lazarian, Reconnection in the interstellar medium. Astrophys. J. 511, 193–203 (1999). doi:10.1086/306643, astro-ph/9712067

    Google Scholar 

  • E.T. Vishniac, S. Pillsworth, G. Eyink, G. Kowal, A. Lazarian, S. Murray, Reconnection current sheet structure in a turbulent medium. Nonlinear Process. Geophys. 19, 605–610 (2012). doi:10.5194/npg-19-605-2012

    Article  ADS  Google Scholar 

  • C. Vogt, T.A. Enßlin, A Bayesian view on Faraday rotation maps Seeing the magnetic power spectra in galaxy clusters. Astron. Astrophys. 434, 67–76 (2005). doi:10.1051/0004-6361:20041839, astro-ph/0501211

    Google Scholar 

  • P.G. Watson, S. Oughton, I.J.D. Craig, The impact of small-scale turbulence on laminar magnetic reconnection. Phys. Plasmas 14(3), 032301 (2007). doi:10.1063/1.2458595

    Google Scholar 

  • G.R. Werner, D.A. Uzdensky, B. Cerutti, K. Nalewajko, M.C. Begelman, The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas (2014) [ArXiv e-prints], 1409.8262

    Google Scholar 

  • S. Xu, H. Yan, A. Lazarian, Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation (2015) [ArXiv e-prints], 1506.05585

    Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010). doi:10.1103/RevModPhys.82.603

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, L63–L66 (2001). doi:10.1086/337972, 1402.7139

    Google Scholar 

  • S. Zenitani, M. Hoshino, The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677, 530–544 (2008). doi:10.1086/528708, 0712.2016

    Google Scholar 

  • S. Zenitani, M. Hesse, A. Klimas, Two-fluid magnetohydrodynamic simulations of relativistic magnetic reconnection. Astrophys. J. 696, 1385–1401 (2009). doi:10.1088/0004-637X/696/2/1385, 0902.2074

    Google Scholar 

  • B. Zhang, H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011). doi:10.1088/0004-637X/726/2/90, 1011.1197

    Google Scholar 

  • W. Zhang, A. MacFadyen, P. Wang, Three-dimensional relativistic magnetohydrodynamic simulations of the Kelvin-Helmholtz instability: magnetic field amplification by a turbulent dynamo. Astrophys. J. Lett. 692, L40–L44 (2009). doi:10.1088/0004-637X/692/1/L40, 0811.3638

    Google Scholar 

  • J. Zrake, A.I. MacFadyen, Numerical simulations of driven relativistic magnetohydrodynamic turbulence. Astrophys. J. 744, 32 (2012). doi:10.1088/0004-637X/744/1/32, 1108.1991

    Google Scholar 

  • J. Zrake, A.I. MacFadyen, Spectral and intermittency properties of relativistic turbulence. Astrophys. J. Lett. 763, L12 (2013). doi:10.1088/2041-8205/763/1/L12, 1210.4066

    Google Scholar 

  • E.G. Zweibel, Ambipolar drift in a turbulent medium. Astrophys. J. 567, 962–970 (2002). doi:10.1086/338682, astro-ph/0107462

    Google Scholar 

Download references

Acknowledgements

AL acknowledges the NSF grant AST 1212096, a distinguished visitor PVE/CAPES appointment at the Physics Graduate Program of the Federal University of Rio Grande do Norte and thanks the INCT INEspao and Physics Graduate Program/UFRN for hospitality. Final work on the review were done in a stimulating atmosphere of Bochum University during the visit supported by the Humboldt Foundation. GK acknowledges support from FAPESP (grants no. 2013/04073-2 and 2013/18815-0). EMGDP: Brazilian agencies FAPESP (2013/10559-5) and CNPq (306598/2009-4). JC acknowledges support from the National Research Foundation of Korea (NRF-2013R1A1A2064475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lazarian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lazarian, A., Kowal, G., Takamoto, M., de Gouveia Dal Pino, E.M., Cho, J. (2016). Theory and Applications of Non-relativistic and Relativistic Turbulent Reconnection. In: Gonzalez, W., Parker, E. (eds) Magnetic Reconnection. Astrophysics and Space Science Library, vol 427. Springer, Cham. https://doi.org/10.1007/978-3-319-26432-5_11

Download citation

Publish with us

Policies and ethics