Skip to main content

Pharmaceutical Applications of Natural Polymers

  • Chapter
  • First Online:
Natural Polymers

Abstract

This chapter covers the pharmaceutical application of natural polymers derived from carbohydrate and protein sources in modified and unmodified forms for pharmaceutical applications such as production of transdermal, percutaneous, oral and topical drug delivery systems. Hydrogel-and microgel-based drug delivery systems are also included due to their increasing importance and potential in the pharmaceutical industry. A detailed overview of the distinctive properties of natural polymers suitable for pharmaceutical applications is provided from the most recent applications reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

API:

Active pharmaceutical ingredients

BTCA:

Butanetetracarboxylic dianhydride

CMC:

Carboxymethyl cellulose

CNS:

Central nervous system

DB:

DamarBatu

DMAP:

4-dimethylaminopyridine

HGH:

Human growth hormone

HPMC:

Hydroxypropylmethyl cellulose

Lo:

Lecithin organogel

NaCMC:

Sodium carboxy methyl cellulose

N-IPAAm:

N-isopropylacrylamide (NIPAAm)

pAA:

Polyacrylic acid

PEG:

Polyethylene glycol

PELA, PLA:

Polylactic acid

PLGA:

Poly(dl-lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PSA:

Pressure sensitive adhesives

PVA:

Polyvinyl alcohol

SPG:

Shirasu porous glass

TDD:

Transdermal drug delivery

References

  • Agulhon P, Markova V, Robitzer M, Quignard F, Mineva T (2012) Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations. Biomacromolecules 13:1899–1907

    Article  CAS  Google Scholar 

  • Ahirrao SP, Gide PS, Shrivastav B, Sharma P (2014) Ionotropic gelation: a promising cross linking technique for hydrogels. Res Rev J Pharm Nanotechnol 2:1–6

    CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  • Ahmed S, Baig M (2014) Biotic elicitor enhanced production of psolaren in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21:499–504

    Article  CAS  Google Scholar 

  • Aikawa T, Konno T, Takai M, Ishihara K (2012) Spherical phospholipid polymer hydrogels for cell encapsulation prepared with a flow-focusing microfluidic channel device. Langmuir 28:2145–2150

    Article  CAS  Google Scholar 

  • Akamatsu K, Chen W, Suzuki Y, Ito T, Nakao A, Sugawara T, Kikuchi R, Nakao S (2010) Preparation of monodisperse chitosan microcapsules with hollow structures using the SPG membrane emulsification technique. Langmuir 26:14854–14860

    Article  CAS  Google Scholar 

  • Alhalaweh A, Andersson S, Velaga SP (2009) Preparation of zolmitriptan-chitosan microparticles by spray drying for nasal delivery. Eur J Pharm Sci 38:206–214

    Article  CAS  Google Scholar 

  • Allahham A, Stewart P, Marriott J, Mainwaring DE (2004) Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer. Int J Pharm 270:139–148

    Article  CAS  Google Scholar 

  • Aptar pharma Inc. (2015) Parenteral drug delivery device. http://www.aptar.com/docs/default-source/pharma-prescription/pro-ject-datasheet.pdf?sfvrsn=0 Accessed on 23 Jan 15

  • Arkvanshi S, Akhtar N, Bhattacharya SS (2014) Transdermal delivery a preclinical and clinical perspective of drugs delivered via patches. Int J Pharm Pharm Sci 6:26–38

    CAS  Google Scholar 

  • Ashley JD, Stefanick JF, Schroeder VA, Suckow MA, Alves NJ, Suzuki R, Kikuchi S, Hideshima T, Anderson KC, Kiziltepe T, Bilgicer B (2014) Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J Control Release 196:113–121

    Article  CAS  Google Scholar 

  • Ashraf MW, Tayyaba S, Nisar A, Afzulpurkar N, Bodhale DW, Lomas T, Poyai A, Tuantranont A (2010) Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions. Cardiovasc Eng 10:91–108

    Article  CAS  Google Scholar 

  • Avadi MR, Jalali A, Sadeghi AMM, Shamimi K, Bayati KH, Nahid E, Dehpour AR, Rafiee-Tehrani M (2005) Diethyl methyl chitosan as an intestinal paracellular enhancer: ex vivo and in vivo studies. Int J Pharm 293:83–89

    Article  CAS  Google Scholar 

  • Bakhru S, Furtado S, Morello A. Mathiowitz E (2013) Oral delivery of proteins by biodegradable naoparticles. Adv Drug Deliver Rev 65:1–11

    Google Scholar 

  • Barnhart S, Carrig T (1998) Critical role of PSAs in transdermal drug delivery. Adhesives & Sealants Industry, pp 1–6

    Google Scholar 

  • Baumann MGD, Conner AH (1994) Handbook of adhesive technology (Chap. 15). In: Pizzi A, Mittal KL (eds) Carbohydrate polymers as adhesives. Marcel Dekker, New York, pp 299–313

    Google Scholar 

  • Beck-Broichsitter M, Schweiger C, Schmehl T, Gessler T, Seeger W, Kissel T (2012) Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. J Control Release 158:329–335

    Article  CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  • Bhattacharya M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298

    Article  CAS  Google Scholar 

  • Bhattacharyya R, Ray SK (2014) Enhanced adsorption of synthetic dyes from aqueous solution by a semi-interpenetrating network hydrogel based on starch. J Ind Eng Chem 20: 3714–3725

    Google Scholar 

  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923

    Article  CAS  Google Scholar 

  • Boppana R, Kulkarni RV, Mutalik SS, Mallikarjun Setty C, Sa B (2010) Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. J Microencapsul 27:337–334

    Article  CAS  Google Scholar 

  • Bracher PJ, Gupta M, Whitesides GM (2010) Patterned paper as a template for the delivery of reactants in the fabrication of planar materials. Soft Matter 6:4303–4309

    Article  CAS  Google Scholar 

  • Brambilla D, Luciani P, Leroux JC (2014) Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release 190:9–14

    Article  CAS  Google Scholar 

  • Brazel CS, Peppas NA (2000) Modeling of drug release from swellable polymers. Eur J Pharma Biopharm 49:47–58

    Article  CAS  Google Scholar 

  • Breymann C, Honegger C, Holzgreve W, Surbek D (2010) Diagnosis and treatment of iron-deficiency anaemia during pregnancy and postpartum. Arch Gynecol Obstet 282:577–580

    Article  CAS  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56

    Article  CAS  Google Scholar 

  • Burke SE, Barrett CJ (2005) Swelling behaviour of hyaluronic acid/polyallylamine hydrochloride multilayer films. Biomacromolecules 6:1419–1428

    Article  CAS  Google Scholar 

  • Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks tosmart materials. J Control Release 190:254–273

    Article  CAS  Google Scholar 

  • Cai Y, Shen W, Leng Loo S, Krantz WB, Wang R, Fane AG, Hu X (2013) Towards temperature driven forward osmosis desalination using Semi-IPN hydrogels as reversible draw agents. Water Res 47:3773–3781

    Article  CAS  Google Scholar 

  • Cano-Cebrián MJ, Zornoza T, Granero L, Polache A (2005) Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr Drug Deliv 2:9–22

    Article  Google Scholar 

  • Carter Fox S, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972

    Article  CAS  Google Scholar 

  • Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    Article  CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84:40–53

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  • Cheng YH, Hung KH, Tsai TH, Lee CJ, Ku RY, Chiu AW, Chiou SH, Liu CJ (2014) Sustained delivery of latanoprost by thermosensitive chitosan-gelatin based hydrogel for controlling ocular hypertension. Acta Biomater 10:4360–4366

    Article  CAS  Google Scholar 

  • Chien WY (1987) Transdermal therapeutic systems. In: Robinson JR, Lee VHL (eds) Controlled drug delivery: fundamentals and applications, 2d edn. Marcel Dekker, Inc., New York, pp 523–552

    Google Scholar 

  • Chung H, Washburn NR (2012) Chemistry of lignin-based materials. Green Mater 1:137–160

    Article  CAS  Google Scholar 

  • Chung TW, Liu DZ, Yang YS (2010) Effects of interpenetration of thermo-sensitive gels by crosslinking of chitosan on nasal delivery of insulin: In vitro characterization and in vivo study. Carbohyd Polym 82:316–322

    Article  CAS  Google Scholar 

  • Cleary GW (1993) Transdermal delivery systems: a medical rationale. In: Shah VP, Maibach HI (eds) Topical Drug bioavailability, bioequivalence, and penetration. Plenum, New York, pp 17–68

    Chapter  Google Scholar 

  • Costa D, Valente AJM, Miguel MG Queiroz J (2014) Plasmid DNA hydrogels for biomedical applications. Adv Colloid Interface Sci 205:257–264

    Google Scholar 

  • Costa-Jύnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohyd Polym 76:472–481

    Google Scholar 

  • Coucke D, Schotsaert M, Libert C, Pringels E, Vervaet C, Foreman P, Saelens X, Remon JP (2009) Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine. Vaccine 27:1279–1286

    Article  CAS  Google Scholar 

  • Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL (2010) Modified gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials 31:7494–7502

    Article  CAS  Google Scholar 

  • Del Palacio A, Garau M, Gonzalez-Escada A, Calvo M (2000) Trends in the treatment of dermatophytosis. In: Biology of dermatophytes and other Keratinophilic fungi. Revista Iberoamericana de Micologia, Bilbao pp 148–158

    Google Scholar 

  • Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875

    Article  CAS  Google Scholar 

  • Devi N, Kumar MT (2009) Preparation and evaluation of gelatin/sodium carboxymethyl cellulose polyelectrolyte complex microparticles for controlled delivery of isoniazid. APPS PharmSciTech 10:1412–1419

    Article  CAS  Google Scholar 

  • Dimas DA, Dallas PP, Rekkas DM, Choulis NH (2000) Effect of several factors on the mechanical properties of pressure-sensitive adhesives used in transdermal therapeutic systems. AAPS PharmSciTech 1:1–8

    Google Scholar 

  • Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. PSTT 1(6):246–253

    CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: Lignin polymers. Ind Crop Prod 33:259–276

    Article  CAS  Google Scholar 

  • Domachuk P, Tsioris K, Omenetto FG, Kaplan DL (2010) Bio-microfluidics: biomaterials and biomimetic designs. Adv Mater 22:249–260

    Article  CAS  Google Scholar 

  • Duan X, Mao S (2010) New strategies to improve the intranasal absorption of insulin. Drug Discov Today 15:416–427

    Article  CAS  Google Scholar 

  • Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK (2007) Dermal and transdermal delivery of an anti-psoriatic agentvia ethanolic liposomes. J Control Release 123:148–154

    Article  CAS  Google Scholar 

  • Dίez-Peña E, Quijada-Garrido I, Barrales-Rienda JM (2002) On the water swelling behaviour of poly(N-isopropylacrylamide)[P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], their random copolymers and sequential interpenetrating polymer networks (IPNs). Polym 43:4341–4348

    Article  Google Scholar 

  • Ekici S, Ilgin P, Butun S, Sahiner N (2014) Hyaluronic acid hydrogel particles with tunable charges as potential drug delivery devices. Carbohydr Polym 84:1306–1313

    Article  CAS  Google Scholar 

  • Eldin MSM, Kamoun EA, Sofan MA, Elbayomi SM (2014) L-Arginine grafted alginate hydrogel bead: a novel pH-sensitive system for specific protein delivery. Arabian J Chem (in press)

    Google Scholar 

  • Elisangela C, Antonio J, Antonio A, Jose A, Luiz H (2007) Preparation and characterization of thermoplastic starch/zein blends. Mat Res 10:1516–1439

    Google Scholar 

  • Elsayed A, Al Remawi M, Qinna N, Farouk A, Badwan A (2009) Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm 73:269–279

    Article  CAS  Google Scholar 

  • Franz TJ et al (1991) Transdermal delivery. In: Kydonieus A (ed) Treatise on controlled drug delivery: fundamentals, optimization, applications. Marcel Dekker Inc., New York 1991, pp 341–421

    Google Scholar 

  • Freeman ED, Hoelzer BC, Eldrige JS, Moeschler SM (2013) Fibrin glue to treat spinal fluid leaks associated with Intrathecal drug systems. Pain Pract 14:S70–S76

    Google Scholar 

  • Fundueanu G, Constantin M, Asmarandei I, Harabagiu V, Ascenzi P, Simionescu BC (2013) The thermosensitivity of pH/thermoresponsive microspheres activated by the electrostatic interaction of pH-sensitive units with a bioactive compound. J Biomed Mater Res A 10A:1661–1669

    Google Scholar 

  • Fundueanu G, Constantin M, Ascenzi P (2009) Poly (N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: influence of the physico-chemical characteristics of drugs on their release profiles. Acta Biomater 5:363–373

    Google Scholar 

  • Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A (2008) Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. Int J Pharm 359:70–78

    Article  CAS  Google Scholar 

  • Gao Y, Ahiabu A, Serpe MJ (2014) Controlled drug release from the aggregation–disaggregation behavior of pH-responsive microgels. Appl Mater Interfaces 6:13749–13756

    Article  CAS  Google Scholar 

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  Google Scholar 

  • Ge S, Lin Y, Lu H, Li Q, He J, Chen B, Wu C, Xu Y (2014) Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm 465:120–131

    Article  CAS  Google Scholar 

  • Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery polyglycolic/poly (lactic acid) homo- and copolymers. Polym 20:1459–1484

    Article  CAS  Google Scholar 

  • Gilson RW, Windischman EF (1983) Luer connector. US Patent No. 4,369,781

    Google Scholar 

  • Giri TK, Thakur A, Alexander A, Ajazuddin Badwaik H, Tripathi DK (2012) Modified chitosan hydrogel as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2:439–449

    Article  CAS  Google Scholar 

  • Graeme SM, John HC, John TF (1999) The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release. J Control Release 58:303–310

    Article  Google Scholar 

  • Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Deillier P (2012) Intranasal drug delivery: an efficient and non-invasive route for systemic administration. Pharmacol Therapeut 134:366–379

    Article  CAS  Google Scholar 

  • Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RFV (2011) Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 79:320–327

    Article  CAS  Google Scholar 

  • Grinberg O, Gedanken A (2010) The development and characterization of starch microspheres prepared by a sonochemical method for the potential drug delivery of insulin. Macromol Chem Phys 211:924–931

    Article  CAS  Google Scholar 

  • Gulrez SKH, Al-Assaf S, Phillips GO (2011) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications (Chap. 5). In: Capri A (ed) Hydrogels: methods of preparation, characterisation and applications, pp 126–131

    Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:570–579

    Article  Google Scholar 

  • Hainer BL, Gibson MV (2011) Vaginitis: diagnosis and treatment. Am Fam Physician 83:807–815

    Google Scholar 

  • Hamilton DA (1961) Hypodermic needle. US Patent No 2,989,053

    Google Scholar 

  • Helgeson ME, Chapin SC, Doyle PS (2011) Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr Opin Colloid Interface Sci 16:106–117

    Article  CAS  Google Scholar 

  • Hennick WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  • Hikima T, Tojo K (1993) Effects of permeation-enhancing agents on drug metabolism in the skin. Jpn Soc Drug Delivery Syst 8:291–295

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym 49:1993–2007

    Article  CAS  Google Scholar 

  • Hoare T, Pelton R (2007) functionalized microgel swelling: comparing theory and experiment. J Phys Chem B 111:11895–11906

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  CAS  Google Scholar 

  • Holzman RS (1998) Prevention and treatment of life-threatening pediatric emergencies requiring Anesthesia. Perioperative Med Pain 17:154–163

    Article  Google Scholar 

  • Hoong YB, Paridah MT, Loh YF, Jalaluddin H, Chuah LA (2011) A new source of natural adhesive: acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. Int J Adhes Adhes 31:164–167

    Article  CAS  Google Scholar 

  • Hou WM, Miyazaki S, Takada M, Komal S (1985) Sustained release of indomethacin form chitosan granules. Chem Pharm Bull 33:3986–3992

    Article  CAS  Google Scholar 

  • Howard-Jones N (1947) A critical study of the origins and early development of hypodermic medication. J Hist Med Allied Sci 2:201–249

    Article  CAS  Google Scholar 

  • Hu X, Lu Q, Sun L, Cebe P, Wang X, Zhang X, Kaplan DL (2010) Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Biomacromolecules 11:3178–3188

    Article  CAS  Google Scholar 

  • Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohyd Polym 69:774–783

    Article  CAS  Google Scholar 

  • Illum L (2003) Nasal drug delivery-possibilities, problems and solutions. J Control Release 87:187–198

    Article  CAS  Google Scholar 

  • Illum L (2012) Nasal drug delivery-Recent developments and future prospects. J Control Release 161:254–263

    Article  CAS  Google Scholar 

  • Illum L, Watts P, Fisher AN, Hinchcliffe M, Norbury H, Jabbal-Gill I, Nankervis R, Davis SS (2002) Intranasal delivery of morphine. J Pharmacol Exp Ther 301:391–400

    Article  CAS  Google Scholar 

  • Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994) Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28:1445–1453

    Article  CAS  Google Scholar 

  • Jacobs IC (2014) Semi-solid formulations (Chap. 12). In: Bar-Shalom D, Rose K (eds) Pediatric formulations. Springer, New York, pp 171–172

    Google Scholar 

  • Jain KK (2008) Drug delivery systems (Chap. 1). In: Jain KK (ed) Drug delivery systems—an overview. Humana Press, New York City, pp 3, 4

    Google Scholar 

  • Javelin Pharmaceuticals, RylomineTM intranasal drug. http://files.shareholder.com/downloads/JVLN/0x0x50414/21164903-69e8-455e-a4f6-7db0f4a9aac4/Feb_23. Accessed 29 Jan 2015

  • Jin KM, Kim YH (2008) Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release 127:249–256

    Article  CAS  Google Scholar 

  • Jones OG, Decker EA, McClements DJ (2009) Formation of biopolymer particles by thermal treatment of β-lactoglobulin–pectin complexes. Food Hydrocolloid 23:1312–1321

    Article  CAS  Google Scholar 

  • Jonker AM, Löwik DWPM, van Hest JCM (2012) Peptide- and protein-based hydrogels. Chem Mater 24:759–773

    Article  CAS  Google Scholar 

  • Joraholmen M, Vanic Z, Tho I, Skalko-Basnet N (2014) Chitosan-coated liposomes for topical vaginal therapy: assuring localized drug effect. Int J Pharm 472:94–101

    Article  CAS  Google Scholar 

  • Kamel S, Ali N, Jahangir K, Shah SM, El-Gendy AA (2008) Pharmaceutical significance of cellulose: a review. Express Polym Lett 2:758–778

    Article  CAS  Google Scholar 

  • Kamoun EA, Chen X, Mohy Eldin MS, Kenawy ES (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8:1–14

    Article  CAS  Google Scholar 

  • Kandavilli S, Nair V, Panchagula R (2002) Polymers in transdermal drug delivery systems. Formulation Technol 62–80

    Google Scholar 

  • Khan MA, Ashraf SM (2005) Development and characterization of a lignin–phenol–formaldehyde wood adhesive using coffee bean shell. J Adhesion Sci Technol 19:493–509

    Article  CAS  Google Scholar 

  • Kim SW (1996) Temperature sensitive polymers for delivery of macromolecular drugs. In: Ogata N, Kim SW, Feijen J et al (eds) Advanced biomaterials in biomedical engineering and drug delivery systems. Springer, Tokyo, pp 126–133

    Google Scholar 

  • Kim MY, Jung B, Park JH (2012) Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33:668–678

    Article  CAS  Google Scholar 

  • Kim JK, Kim HJ, Chung JY, Lee JH, Young SB, Kim YH (2014) Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res 37:60–68

    Article  CAS  Google Scholar 

  • Kinnunen HM, Mrsny RJ (2014) Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of the subcutaneous injection site. J Control Release 182:22–32

    Article  CAS  Google Scholar 

  • Klingenberg HO (2013) Keeping up with the biopharmaceutical market. OnDrugDelivery 44:4–6

    Google Scholar 

  • Knaul JZ, Hudson S, Creber AM (1999) Improved mechanical properties of chitosan fibers. J Appl Polym Sci 72:1721–1732

    Article  CAS  Google Scholar 

  • Kono H, Otaka F, Ozaki M (2014) Preparation and characterization of guar gum hydrogels as carriermaterials for controlled protein drug delivery. Carbohydr Polym 111:830–840

    Article  CAS  Google Scholar 

  • Kotzé AF, Leeuw BJD, Lueßen HL, Boer AGD, Verhoef JC, Junginger HE (1997) Chitosans for enhanced delivery of therapeutic peptides across intestinal epithelia: in vitro Evaluation in Caco-2 cell monolayers. Int J Pharm 159:243–253

    Article  Google Scholar 

  • Krauland AH, Guggi D, Bernkop-Schnürch A (2004) Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non- diabetic rats. J Control Release 95:547–555

    Article  CAS  Google Scholar 

  • Kurland NE, Ragland RB, Zhang A, Moustafa ME, Kundu SC, Yadavalli VS (2014) pH responsive poly amino-acid hydrogels formed via silk sericin templating. Int J Biol Macromol 70:565–571

    Article  CAS  Google Scholar 

  • Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym-Plast Technol 50:1475–1486

    Article  CAS  Google Scholar 

  • Lan Kang M, Su Cho C, Yoo HS (2009) Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 27:857–865

    Article  CAS  Google Scholar 

  • Laurén P, Lou YR, Raki M, Urtti A, Bergström K, Yliperttula M (2014) Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo. Eur J Pharm Science 65:79–88

    Article  CAS  Google Scholar 

  • Lautenschläger C, Schmidt C, Fischer D, Stallmach A (2014) Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliver Rev 71:58–76

    Article  CAS  Google Scholar 

  • Laxmi RJ, Karthikeyan R, Babu PS, Babu RVVN (2013) Formulation and evaluation of antipsoriatic gel using natural excipients. J Acute Dis 2:115–121

    Article  Google Scholar 

  • Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug-release behaviour of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660

    Article  CAS  Google Scholar 

  • Lee AC, Hong YH (2009) Coacervate formation of a-lactalbumin–chitosan and b-lactoglobulin–chitosan complexes. Food Res Int 42:733–738

    Article  CAS  Google Scholar 

  • Lee BR, Oh ES (2013) Effect of molecular weight and degree of substitution of a sodium carboxymethyl cellulose binder on Li4Ti5O12 anodic performance. J Phys Chem 117:4404–4409

    Article  CAS  Google Scholar 

  • Li X, Ma X, Zhu C, Luo Y, Lui B, Chen L (2014b) A novel injectable pH/temperature sensitive CS-HLC-GP hydrogel: the gelation mechanism and its properties. Soft Mater 12:1–11

    Article  CAS  Google Scholar 

  • Lee K, Lee CY, Jung H (2011) Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32:3134–3140

    Article  CAS  Google Scholar 

  • Lee Y, Bae JW, Lee JW, Suh W, Park KD (2014) Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings: effects of fibroblast delivery on wound healing efficacy. J Mater Chem B 2:7712–7718

    Article  CAS  Google Scholar 

  • Lemoine D, Wauters F, Bouchend’homme S, Préat V (1998) Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm 176:9–19

    Google Scholar 

  • Leung L, Chan C, Baek S, Naguib H (2008) Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomed Mater 3:1–9

    Article  CAS  Google Scholar 

  • Li Y, McClements DJ (2011) Controlling lipid digestion by encapsulation of protein-stabilized lipid droplets within alginateechitosan complex coacervates. Food Hydrocolloids 25:1025–1033

    Article  CAS  Google Scholar 

  • Li F, Wu H, Zhang H, Li F, Gu CH, Yang Q (2009) Antitumor drug Paclitaxel-loaded pH-sensitive nanoparticles targeting tumor extracellular pH. Carbohyd Polym 77:773–778

    Article  CAS  Google Scholar 

  • Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73–83

    Article  CAS  Google Scholar 

  • Luo Y, Kirkerb KR, Glenn D. Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184

    Google Scholar 

  • Ma Z, Lim L-Y (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 20:1812–1819

    Article  CAS  Google Scholar 

  • Mandal B, Ray SK (2014) Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer. Mater Sci Eng C 44:132–143

    Article  CAS  Google Scholar 

  • Mao S, Germershaus O, Fischer D, Linn T, Schnepf R, Kissel T (2005) Uptake and transport of PEG-graft-trimethyl-chitosan copolymer- insulin nanocomplexes by epithelial cells. Pharm Res 22:2058–2068

    Article  CAS  Google Scholar 

  • Mark D, Haeberle S, Zengerle R, Ducree J, Vladisavljević GT (2009) Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle. J Colloid Interface Sci 336:634–641

    Article  CAS  Google Scholar 

  • Martín del Valle EM, Galán MA, Carbonell RG (2009) Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res 48:2475–2486

    Article  CAS  Google Scholar 

  • Martinac A, Filipović-Grčić J, Voinovich D, Perissuttib B, Franceschinis E (2005) Development and bioadhesive properties of chitosan-ethylcellulose microspheres for nasal delivery. Int J Pharm 291:69–77

    Article  CAS  Google Scholar 

  • Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V (2014) A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 103:2211–2230

    Article  CAS  Google Scholar 

  • Mekkawy A, Fathy M, El-Shanawany S (2013) Formulation and in vitro evaluation of fluconazole topical gels. Br J Pharm Res 3:293–313

    Article  Google Scholar 

  • Mignani S, Kazzouli SE, Bousmina M, Majoral JP (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliver Rev 65:1316–1330

    Article  CAS  Google Scholar 

  • Mishra D, Sinha VK (2010) Eco-economical polyurethane wood adhesives from cellulosic waste: synthesis, characterization and adhesion study. Int J Adhes Adhes 30:47–54

    Article  CAS  Google Scholar 

  • Moebus K, Siepmann J, Bodmeier R (2009) Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur J Pharm Biopharm 72:42–53

    Article  CAS  Google Scholar 

  • Mohamed NA, Fahmy MM (2012) Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci 13:11194–11209

    Article  CAS  Google Scholar 

  • Mondragón M, Hernández EM, Rivera-Armenta JL, Rodríguez-González FJ (2009) Injection molded thermoplastic starch/natural rubber/clay nanocomposites: morphology and mechanical properties 77:80–86

    Google Scholar 

  • Moreno E, Schwartz J, Larrañeta E, Paul A. Nguewa PA, Sanmartín C, Agüeros M, Juan M. Irache JM, Espuelas S (2014) Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) – Pluronic® F127 copolymers for controlled protein release. Int J Pharm 459:1–9

    Google Scholar 

  • Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910

    Article  CAS  Google Scholar 

  • Mueller RS, Bergval K, Bensignor E, Bond R (2012) A review of topical therapy for skin infections with bacteria and yeast. Vet Dermatol 23:330–341

    Article  Google Scholar 

  • Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, Warsi MH, Ahmad FJ (2014) A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J, pp 1–16 (in press)

    Google Scholar 

  • Mundada AS, Avari JG (2009) Damar Batu as a novel matrix former for the transdermal drug delivery: in vitro evaluation. Drug Dev Ind Pharm 35:1147–1154

    Article  CAS  Google Scholar 

  • Musabayane CT, Munjeri O, Matavire TP (2003) Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat. Ren Fail 25:525–34

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77:1–9

    Google Scholar 

  • Nesseem DI, Eid SF, El-Houseny SS (2011) Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci 89:430–438

    Article  CAS  Google Scholar 

  • Nguyen MK, Lee DS (2010) Bioadhesive PAA-PEG-PAA Triblock copolymer hydrogels for drug delivery in oral cavity. Macromol Res 18:284–288

    Article  CAS  Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  CAS  Google Scholar 

  • Nishioka Y, Kyotani S, Miyazaki M, Okazaki K, Ohnishi S, Yamamoto Y, Ito K (1990) Release characteristics of cisplatin chitosan mictospheres and effect of containing chitin. Cham Pharm Bull 38:2871–2873

    Article  CAS  Google Scholar 

  • Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer (2014) Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45

    Google Scholar 

  • Nonoyama T, Ogasawara H, Tanaka M, Higuchi M, Kinoshita T (2012) Calcium phosphate biomineralization in peptide hydrogels for injectable bone-filling materials. Soft Matter 8:11531–11536

    Article  CAS  Google Scholar 

  • Ogaji I, Nep E, Audu-Peter JD (2011) Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta 3:1–16

    Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  • Olatunji O, Igwe CC, Ahmed AS, Alhassan DOA, Asieba GO, Das DB (2014) Microneedles from fish scale biopolymer. J Appl Polym Sci 131:1–10

    Article  CAS  Google Scholar 

  • Oun R, Plumb A, Wheate NJ (2014) A cisplatin slow release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit(7)uril, gelatin and polyvinyl alcohol. J Inorg Biochem 134:100–105

    Article  CAS  Google Scholar 

  • Pal D, Nayak AK (2012) Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro–in vivo evaluation. Drug Deliv 19:123–131

    Article  CAS  Google Scholar 

  • Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, de Cui F (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147

    Article  CAS  Google Scholar 

  • Patel VF, Murname D, Brown MB (2014) Pediatric formulations: a roadmap (Chap. 15). In: Bar-Shalom D, Rose K (eds) Buccal/sublingual drug delivery for the paediatric population. Springer, Berlin, pp 205–208

    Google Scholar 

  • Patil SB, Sawant KK (2009) Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. J Microencapsul 26:432–443

    Article  CAS  Google Scholar 

  • Patil P, Chavanke D, Wagh M (2012) A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm Sci 4:27–32

    CAS  Google Scholar 

  • Pereswetoff-Morath L (1998) Microspheres as nasal drug delivery systems. Adv Drug Deliver Rev 29:185–194

    Article  CAS  Google Scholar 

  • Pfister WR, Hsieh DST (1990) Permeation enhancers compatible with transdermal drug delivery systems: Part II: System design considerations. Med Device Technol 14:54–60

    CAS  Google Scholar 

  • Pich AZ, Adler HJP (2007) Composite aqueous microgels: an overview of recent advances in synthesis, characterization and application. Polym Int 56:291–307

    Article  CAS  Google Scholar 

  • Pietrzak WS, Verstynen ML, Sarver DR (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8:2–92

    Article  Google Scholar 

  • Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392:1–19

    Article  CAS  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  • Pocius AV (1991) Adhesives. In: Howe-Grants M (ed) Kirk-Othmer encyclopedia of chemical technology, 4th edn. Wiley-Interscience, New York, pp 445–466

    Google Scholar 

  • Ponchel G, Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Adva Drug Deliv Rev 34:191–219

    Article  CAS  Google Scholar 

  • Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohyd Polym 64:312–318

    Article  CAS  Google Scholar 

  • Rathna GVN, Chatterji PR (2003) Controlled drug release from gelatin-sodium carboxymethylcellulose interpenetrating polymer networks. J Macromol Sci A A40:629–639

    Article  CAS  Google Scholar 

  • Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK (2012) Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2:8–15

    Google Scholar 

  • Rekha MR, Sharma CP (2013) Oral delivery of therapeutic protein/peptide for diabetes—future perspectives. Int J Pharm 440:48–62

    Article  CAS  Google Scholar 

  • Reñéa R, Ricart J, Hernández B (2014) From high doses of oral rivastigmine to transdermal rivastigmine patches: user experience and satisfaction among caregivers of patients with mild to moderate Alzheimer disease. Neurologίa 29:86–93

    Article  Google Scholar 

  • Rexam PLC (2015) Parenteral drug delivery device. http://www.rexam.com/files/pdf/brochures/parenteral.pdf. Accessed on 23 Jan 15

  • Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581

    Article  CAS  Google Scholar 

  • Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  • Rolf D, Urmann EKS (2000a) Method of forming adhesive patch for applying medication to the skin. Patent No: 6096333

    Google Scholar 

  • Rolf D, Urmann EKS (2000b) Adhesive patch for applying medication to the skin and method, vol 1237. US Patent No: 6096334

    Google Scholar 

  • Rolstad BS, Bryant RA, Nix DP (2012) Acute & chronic wounds: current management concepts (Chap. 18). In: Bryant RA, Nix DP (eds) Topical management, 4th edn, pp 298–299

    Google Scholar 

  • Rondon C, Argillier JF, Leal-Calderon F (2014) Delivery of functional polyelectrolytes from complexes induced by salt addition: Impact of the initial binding strength. J Colloid Interf Sci 436:154–159

    Article  CAS  Google Scholar 

  • Säkkinen M, Marvola J, Kanerva N, Lindevall K, Llipponen M, Kekki T, Ahonen A, Marvola M (2004) Gamma scintigraphic evaluation of the fate of microcrystalline chitosan granules in human stomach. Eur J Pharm Biopharm 57:133–143

    Article  CAS  Google Scholar 

  • Sanders LM (1990) Drug delivery systems and routes of administration of peptide and protein drugs. Eur J Drug Metab Ph 15:95–102

    Article  CAS  Google Scholar 

  • Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  Google Scholar 

  • Sarkar G, Ranjan Saha N, Roy I, Bhattacharyya A, Bose M, Mishra R, Rana D, Bhattacharjee D, Chattopadhyay D (2014) Taro corms mucilage/HPMC based transdermal patch: An efficient device for delivery of diltiazem hydrochloride. Int J Biol Macromol 66:158–165

    Article  CAS  Google Scholar 

  • Sawayanagi Y, Nambu N, Nagai T (1982) Enhancement of dissolution properties of griseofulvin from ground mixtures with chitin and chitosan. Chem Pharm Bull 30:4464–4467

    Article  CAS  Google Scholar 

  • Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51:293–298

    Article  CAS  Google Scholar 

  • Sharma K, Singh V, Arora SA (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 3:85–103

    Google Scholar 

  • Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11:901–915

    Article  CAS  Google Scholar 

  • Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180

    Article  CAS  Google Scholar 

  • Siddaramaiah NR (2009) Feasibility of xanthan gum-sodium alginate as a transdermal drug delivery system for domperidone. J Mater Sci Mater Med 20:2085–2089

    Article  CAS  Google Scholar 

  • Silva A, Santos D, Ferreira D, Souto E (2007) Characterization of ibuprofen loaded solid lipid nanoparticles dispersed in semi-solid carbopol gels. J Biotechnol 6:S67–S68

    Article  Google Scholar 

  • Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 193:214–277

    Article  CAS  Google Scholar 

  • Singla V, Saini S, Joshi B, Rana AC (2012) Emulgel: A new platform for topical drug delivery. Int J Pharm Bio Sci 3:485–498

    CAS  Google Scholar 

  • Song F, Zhang LI, Yang C, Yan L (2009) Genipin-crosslinked casein hydrogels for controlled drug delivery. Int J Pharm 373:14–47

    Google Scholar 

  • Soppimatha KS, Aminabhavia TM, Kulkarnia AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  Google Scholar 

  • Strong LE, Dahotre SN, West JL (2014) Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J Control Release 178:63–68

    Article  CAS  Google Scholar 

  • Subbu V, Robert G (1998) Skin adhesives and skin adhesion: 1. Transdermal Drug delivery system. Biomaterials 19:1119–1136

    Article  Google Scholar 

  • Suh H, Shin J, Kim YC (2014) Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 3:42–49

    Article  CAS  Google Scholar 

  • Suksaeree J, Boonme P, Ritthidej C, Pichayakorn W (2011) Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem Eng Res Des 5:113–118

    Google Scholar 

  • Suksaeree J, Picharyakorn W, Monton C, Sakunpak A, Chusut T, Saingam W (2014) Rubber polymers for transdermal drug delivery systems. Ind Eng Chem Res 53:507–513

    Article  CAS  Google Scholar 

  • Sun Y (1986) Kinetics and thermodynamics of drug permeation through silicone elastomers: testosterone derivatives and structure-permeability relationships. Ph.D thesis, Rutgers University, New Jersey

    Google Scholar 

  • Tan HS, Pfister WR (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. PSTT 2:60–69

    CAS  Google Scholar 

  • Tataru G, Popa M, Desbrieres J (2011) Microparticles of hydrogel type based on carboxymethylcellulose and gelatin for controlled release of water soluble drugs. Revue Roumaine de Chimie 56:399+

    Google Scholar 

  • Teeranachaideekul V, Souto EB, Mϋller RH, Junyaprasert VB (2008) Physicochemical characterization and in vitro release studies of ascorbylpalmitate-loaded semi-solid nanostructured lipid carriers (NLC gels). J Microencapsul 25:111–120

    Article  CAS  Google Scholar 

  • The Pharma Letter (2015) Rylomine impresses in Ph III pain trial. http://www.thepharmaletter.com/article/rylomine-impresses-in-ph-iii-pain-trial. Accessed 29 Jan 2015

  • Tian G, Hindle M, Longest PW (2014) Targeted lung delivery of nasally administered aerosols. Aerosol Sci Tech 48:434–449

    Article  CAS  Google Scholar 

  • Timgren A, Rayner M, Dejmek P, Marku D, Sjöö M (2013) Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Sci Nutr 1:157–171

    Article  CAS  Google Scholar 

  • Tojo K (2005) Mathematical models of transdermal and topical drug delivery, 2nd edn. Biocom systems Inc, Japan

    Google Scholar 

  • Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliver Revs 63:1257–1266

    Article  CAS  Google Scholar 

  • Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12:2872–2880

    Article  CAS  Google Scholar 

  • Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87

    Article  CAS  Google Scholar 

  • Tufts M, Musabayane C (2010) Transdermal delivery of insulin using amidated pectin hydrogels patches. Endocr Abstr 21 (P173)

    Google Scholar 

  • Uraih LC, Maronpot RR (1990) Normal histology of the nasal cavity and application of special techniques. Environ Health Persp 85:187–208

    Article  CAS  Google Scholar 

  • Valenta C (2005) The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliver Rev 57:1692–1712

    Article  CAS  Google Scholar 

  • Valenta C, Auner BG (2004) The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58:279–289

    Article  CAS  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  CAS  Google Scholar 

  • Variankaval NE, Jacob KI, Dinh SM (1999) Crystallization of β-estradiol in an acrylic transdermal drug delivery system. J Biomed Mater Res 44:397–406

    Article  CAS  Google Scholar 

  • Varum FJO, Hatton GB, Basit AW (2013) Food, physiology and drug delivery. Int J Pharm 457:446–460

    Article  CAS  Google Scholar 

  • Viebke C, Piculell L, Nilsson S (1994) On the mechanism of gelation of helix-forming biopolymers. Macromolecules 27:4160–4166

    Article  CAS  Google Scholar 

  • Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, Drust GL, Hipskind PA (2004) Characteristic physical properties and structural fragments of marketed oral drugs. Med Chem 47:224–232

    Article  CAS  Google Scholar 

  • Vinogradov SV (2006) Colloidal microgels in drug delivery applications. Curr Pharm Des 12:4703–4712

    Article  CAS  Google Scholar 

  • Waite HJ (1990) Marine adhesive proteins: natural composite thermosets. Int J Biol Macromol 12:139–144

    Article  CAS  Google Scholar 

  • Walker LP, Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3–14

    Article  CAS  Google Scholar 

  • Weimer PJ, Conner AH, Lorenz LF (2003) Solid residues from Ruminococcus cellulose fermentations as components of wood adhesive formulations. Appl Microbiol Biotechnol 63:29–34

    Article  CAS  Google Scholar 

  • West Pharma Ltd (2015) Parenteral drug delivery device. http://www.westpharma.com/SiteCollectionDocuments/SelfDose%20Sell%20Sheet%207169.pdf. Accessed on 23 Jan 2015

  • Wiedersberg S, Guy RH (2014) Transdermal drug delivery: 30+ years of war and still fighting! J Control Release 190:150–156

    Article  CAS  Google Scholar 

  • Willimann H, Walde P, Luisi PL, Gazzaniga A, Stroppolo F (1992) Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci 81:871–874

    Article  CAS  Google Scholar 

  • Wokovich AM, Prodduturi S, Doub WH, Hussain AS, Buhse LF (2006) Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm 64:1–8

    Article  CAS  Google Scholar 

  • Woolfson DN (2010) Building fibrous biomaterials from α-Helical and collagen-like coiled-coil peptides. Biopolymers (Peptide Sci) 94:118–127

    Article  CAS  Google Scholar 

  • Xiao W, He J, Nichol JW, Wang L, Hutson CB, Wang B, Du Y, Fan H, Khademhosseini A (2011) Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomater 7:2384–2393

    Article  CAS  Google Scholar 

  • Xu YE, Guo J, Xu Y, Li HY, Seville PC (2014) Influence of excipients on spray-dried powders for inhalation. Powder Technol 256:217–223

    Article  CAS  Google Scholar 

  • Yang X, Kim JC (2010) Novel pH-sensitive microgels prepared using salt bridge. Int J Pharm 388:58–63

    Article  CAS  Google Scholar 

  • Yang Q, Adrus N, Tomicki F, Ulbricht M (2011) Composites of functional polymeric hydrogels and porous membranes. J Mater Chem 21:2783–2811

    Article  CAS  Google Scholar 

  • Yang L, Liu T, Song K, Wu S, Fan X (2013) Effect of intermolecular and intramolecular forces on hydrodynamic diameters of Poly(N-isopropylacrylamide) copolymers in aqueous solutions. J Appl Polym Sci 127:4280–4287

    Article  CAS  Google Scholar 

  • Yao MH, Yang J, Song JT, Zhao DH, Du MS, Zhao YD, Liu B (2014) Directed self-assembly of polypeptide-engineered physical microgels for building porous cell-laden hydrogels. Chem Commun 59:9405–9408

    Article  CAS  Google Scholar 

  • York P (1996) New materials and systems for drug delivery and targeting. Spec Publ R Soc Chem 178:1–10

    CAS  Google Scholar 

  • You X, Chang JH, Ju BK, Pak JJ (2011) Rapidly dissolving fibroin microneedles for transdermal drug delivery. Mat Sci Eng C 31:1632–1636

    Article  CAS  Google Scholar 

  • Zhao S (2014) Osmotic pressure versus swelling pressure: comment on “bifunctional polymer hydrogel layers as forward osmosis drawagents for continuous production of fresh water using solarenergy”. Environ Sci Technol 48:4212–4213

    Article  CAS  Google Scholar 

  • Zhao F, Qin X, Feng S, Gao Y (2014) Preparation of microgel composite hydrogels by heating natural drying microgel composite polymers. J Appl Polym Sci 131:1–7

    Article  CAS  Google Scholar 

  • Zheng H, Du Y, Yu J, Huang R, Zhang L (2001) Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J Appl Polym Sci 80:2558–2565

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ololade Olatunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nayak, A., Olatunji, O., Bhusan Das, D., Vladisavljević, G. (2016). Pharmaceutical Applications of Natural Polymers. In: Olatunji, O. (eds) Natural Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-26414-1_9

Download citation

Publish with us

Policies and ethics